Что такое корень уравнения - Flm-Krym.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Что такое корень уравнения

Уравнение и его корни: определения, примеры

Получив общее представление о равенствах, и познакомившись с одним из их видов – числовыми равенствами, можно начать разговор еще об одном очень важном с практической точки зрения виде равенств – об уравнениях. В этой статье мы разберем, что такое уравнение, и что называют корнем уравнения. Здесь мы дадим соответствующие определения, а также приведем разнообразные примеры уравнений и их корней.

Навигация по странице.

Что такое уравнение?

Целенаправленное знакомство с уравнениями обычно начинается на уроках математики во 2 классе. В это время дается следующее определение уравнения:

Уравнение – это равенство, содержащее неизвестное число, которое надо найти.

Неизвестные числа в уравнениях принято обозначать с помощью маленьких латинских букв, например, p , t , u и т.п., но наиболее часто используются буквы x , y и z .

Таким образом, уравнение определяется с позиции формы записи. Иными словами, равенство является уравнением, когда подчиняется указанным правилам записи – содержит букву, значение которой нужно найти.

Приведем примеры самых первых и самых простых уравнений. Начнем с уравнений вида x=8 , y=3 и т.п. Чуть сложнее выглядят уравнения, содержащие вместе с числами и буквами знаки арифметических действий, например, x+2=3 , z−2=5 , 3·t=9 , 8_x=2 .

Разнообразие уравнений растет после знакомства со скобками – начинают появляться уравнения со скобками, например, 2·(x−1)=18 и x+3·(x+2·(x−2))=3 . Неизвестная буква в уравнении может присутствовать несколько раз, к примеру, x+3+3·x−2−x=9 , также буквы могут быть в левой части уравнения, в его правой части, или в обеих частях уравнения, например, x·(3+1)−4=8 , 7−3=z+1 или 3·x−4=2·(x+12) .

Дальше после изучения натуральных чисел происходит знакомство с целыми, рациональными, действительными числами, изучаются новые математические объекты: степени, корни, логарифмы и т.д., при этом появляются все новые и новые виды уравнений, содержащие эти вещи. Их примеры можно посмотреть в статье основные виды уравнений, изучающиеся в школе.

В 7 классе наряду с буквами, под которыми подразумевают некоторые конкретные числа, начинают рассматривать буквы, которые могут принимать различные значения, их называют переменными (смотрите статью числовые, буквенные выражения и выражения с переменными). При этом в определение уравнения внедряется слово «переменная», и оно становится таким:

Уравнением называют равенство, содержащее переменную, значение которой нужно найти.

Например, уравнение x+3=6·x+7 – уравнение с переменной x , а 3·z−1+z=0 – уравнение с переменной z .

На уроках алгебры в том же 7 классе происходит встреча с уравнениями, содержащими в своей записи не одну, а две различные неизвестные переменные. Их называют уравнениями с двумя переменными. В дальнейшем допускают присутствие в записи уравнений трех и большего количества переменных.

Уравнения с одной, двумя, тремя и т.д. переменными – это уравнения, содержащие в своей записи одну, две, три, … неизвестные переменные соответственно.

Например, уравнение 3,2·x+0,5=1 – это уравнение с одной переменной x , в свою очередь уравнение вида x−y=3 – это уравнение с двумя переменными x и y . И еще один пример: x 2 +(y−1) 2 +(z+0,5) 2 =27 . Понятно, что такое уравнение – это уравнение с тремя неизвестными переменными x , y и z .

Что такое корень уравнения?

С определением уравнения непосредственно связано определение корня этого уравнения. Проведем некоторые рассуждения, которые нам помогут понять, что такое корень уравнения.

Допустим, перед нами находится уравнение с одной буквой (переменной). Если вместо буквы, входящей в запись этого уравнения, подставить некоторое число, то уравнение обратиться в числовое равенство. Причем, полученное равенство может быть как верным, так и неверным. Например, если вместо буквы a в уравнение a+1=5 подставить число 2 , то получится неверное числовое равенство 2+1=5 . Если же мы в это уравнение подставим вместо a число 4 , то получится верное равенство 4+1=5 .

На практике в подавляющем большинстве случаев интерес представляют такие значения переменной, подстановка которых в уравнение дает верное равенство, эти значения называют корнями или решениями данного уравнения.

Корень уравнения – это такое значение буквы (переменной), при подстановке которого уравнение обращается в верное числовое равенство.

Отметим, что корень уравнения с одной переменной также называют решением уравнения. Другими словами, решение уравнения и корень уравнения – это одно и то же.

Поясним это определение на примере. Для этого вернемся к записанному выше уравнению a+1=5 . Согласно озвученному определению корня уравнения, число 4 есть корень этого уравнения, так как при подстановке этого числа вместо буквы a получаем верное равенство 4+1=5 , а число 2 не является его корнем, так как ему отвечает неверное равенство вида 2+1=5 .

На этот момент возникает ряд естественных вопросов: «Любое ли уравнение имеет корень, и сколько корней имеет заданное уравнение»? Ответим на них.

Существуют как уравнения, имеющие корни, так и уравнения, не имеющие корней. Например, уравнение x+1=5 имеет корень 4 , а уравнение 0·x=5 не имеет корней, так как какое бы число мы не подставили в это уравнение вместо переменной x , мы получим неверное равенство 0=5 .

Что касается числа корней уравнения, то существуют как уравнения, имеющие некоторое конечное число корней (один, два, три и т.д.), так и уравнения, имеющие бесконечно много корней. Например, уравнение x−2=4 имеет единственный корень 6 , корнями уравнения x 2 =9 являются два числа −3 и 3 , уравнение x·(x−1)·(x−2)=0 имеет три корня 0 , 1 и 2 , а решением уравнения x=x является любое число, то есть, оно имеет бесконечное множество корней.

Пару слов стоит сказать о принятой записи корней уравнения. Если уравнение не имеет корней, то обычно так и пишут «уравнение не имеет корней», или применяют знак пустого множества ∅. Если уравнение имеет корни, то их записывают через запятую, или записывают как элементы множества в фигурных скобках. Например, если корнями уравнения являются числа −1 , 2 и 4 , то пишут −1 , 2 , 4 или <−1, 2, 4>. Допустимо также записывать корни уравнения в виде простейших равенств. Например, если в уравнение входит буква x , и корнями этого уравнения являются числа 3 и 5 , то можно записать x=3 , x=5 , также переменной часто добавляют нижние индексы x1=3 , x2=5 , как бы указывая номера корней уравнения. Бесконечное множество корней уравнения обычно записывают в виде числового промежутка, также при возможности используют обозначения множеств натуральных чисел N , целых чисел Z , действительных чисел R . Например, если корнем уравнения с переменной x является любое целое число, то пишут , а если корнями уравнения с переменной y является любое действительное число от 1 до 9 включительно, то записывают .

Для уравнений с двумя, тремя и большим количеством переменных, как правило, не применяют термин «корень уравнения», в этих случаях говорят «решение уравнения». Что же называют решением уравнений с несколькими переменными? Дадим соответствующее определение.

Решением уравнения с двумя, тремя и т.д. переменными называют пару, тройку и т.д. значений переменных, обращающую это уравнение в верное числовое равенство.

Покажем поясняющие примеры. Рассмотрим уравнение с двумя переменными x+y=7 . Подставим в него вместо x число 1 , а вместо y число 2 , при этом имеем равенство 1+2=7 . Очевидно, оно неверное, поэтому, пара значений x=1 , y=2 не является решением записанного уравнения. Если же взять пару значений x=4 , y=3 , то после подстановки в уравнение мы придем к верному равенству 4+3=7 , следовательно, эта пара значений переменных по определению является решением уравнения x+y=7 .

Уравнения с несколькими переменными, как и уравнения с одной переменной, могут не иметь корней, могут иметь конечное число корней, а могут иметь и бесконечно много корней.

Пары, тройки, четверки и т.д. значений переменных часто записывают кратко, перечисляя их значения через запятую в круглых скобках. При этом записанные числа в скобках соответствуют переменным в алфавитном порядке. Поясним этот момент, вернувшись к предыдущему уравнению x+y=7 . Решение этого уравнения x=4 , y=3 кратко можно записать как (4, 3) .

Наибольшее внимание в школьном курсе математики, алгебры и начал анализа уделяется нахождению корней уравнений с одной переменной. Правила этого процесса мы очень подробно разберем в статье решение уравнений.

Уравнение и его корни: определения, примеры

После того, как мы изучили понятие равенств, а именно один из их видов – числовые равенства, можно перейти к еще одному важному виду – уравнениям. В рамках данного материала мы объясним, что такое уравнение и его корень, сформулируем основные определения и приведем различные примеры уравнений и нахождения их корней.

Понятие уравнения

Обычно понятие уравнения изучается в самом начале школьного курса алгебры. Тогда оно определяется так:

Уравнением называется равенство с неизвестным числом, которое нужно найти.

Принято обозначать неизвестные маленькими латинскими буквами, например, t , r , m др., но чаще всего используются x , y , z . Иными словами, уравнение определяет форма его записи, то есть равенство будет уравнением только тогда, когда будет приведен к определенному виду – в нем должна быть буква, значение которое надо найти.

Приведем несколько примеров простейших уравнений. Это могут быть равенства вида x = 5 , y = 6 и т.д., а также те, что включают в себя арифметические действия, к примеру, x + 7 = 38 , z − 4 = 2 , 8 · t = 4 , 6 : x = 3 .

После того, как изучено понятие скобок, появляется понятие уравнений со скобками. К ним относятся 7 · ( x − 1 ) = 19 , x + 6 · ( x + 6 · ( x − 8 ) ) = 3 и др. Буква, которую надо найти, может встречаться не один раз, а несколько, как, например, в уравнении x + 2 + 4 · x − 2 − x = 10 . Также неизвестные могут быть расположены не только слева, но и справа или в обеих частях одновременно, например, x · ( 8 + 1 ) − 7 = 8 , 3 − 3 = z + 3 или 8 · x − 9 = 2 · ( x + 17 ) .

Далее, после того, как ученики знакомятся с понятием целых, действительных, рациональных, натуральных чисел, а также логарифмами, корнями и степенями, появляются новые уравнения, включающие в себя все эти объекты. Примерам таких выражений мы посвятили отдельную статью.

В программе за 7 класс впервые возникает понятие переменных. Это такие буквы, которые могут принимать разные значения (подробнее см. в статье о числовых, буквенных выражениях и выражениях с переменными). Основываясь на этом понятии, мы можем дать новое определение уравнению:

Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.

То есть, к примеру, выражение x + 3 = 6 · x + 7 – это уравнение с переменной x , а 3 · y − 1 + y = 0 – уравнение с переменной y .

В одном уравнении может быть не одна переменная, а две и более. Их называют соответственно уравнениями с двумя, тремя переменными и др. Запишем определение:

Уравнениями с двумя (тремя, четырьмя и более) переменными называют уравнения, которые включают в себя соответствующее количество неизвестных.

К примеру, равенство вида 3 , 7 · x + 0 , 6 = 1 является уравнением с одной переменной x , а x − z = 5 – уравнением с двумя переменными x и z . Примером уравнения с тремя переменными может быть выражение x 2 + ( y − 6 ) 2 + ( z + 0 , 6 ) 2 = 26 .

Корень уравнения

Когда мы говорим об уравнении, сразу возникает необходимость определиться с понятием его корня. Попробуем объяснить, что оно означает.

Читайте также:  Что нужно иметь в автомобиле

Нам дано некое уравнение, включающее в себя одну переменную. Если мы подставим вместо неизвестной буквы число, то уравнение станет числовым равенством – верным или неверным. Так, если в уравнении a + 1 = 5 мы заменим букву числом 2 , то равенство станет неверным, а если 4 , то получится верное равенство 4 + 1 = 5 .

Нас больше интересуют именно те значения, с которыми переменная обратится в верное равенство. Они и называются корнями или решениями. Запишем определение.

Корнем уравнения называют такое значение переменной, которое обращает данное уравнение в верное равенство.

Корень также можно назвать решением, или наоборот – оба эти понятия означают одно и то же.

Возьмем пример для пояснения этого определения. Выше мы приводили уравнение a + 1 = 5 . Согласно определению, корнем в данном случае будет 4 , потому что при подстановке вместо буквы оно дает верное числовое равенство, а двойка не будет решением, поскольку ей отвечает неверное равенство 2 + 1 = 5 .

Сколько корней может иметь одно уравнение? Любое ли уравнение имеет корень? Ответим на эти вопросы.

Уравнения, не имеющие ни одного корня, тоже существуют. Примером может быть 0 · x = 5 . Мы можем подставить в него бесконечно много разных чисел, но ни одно из них не превратит его в верное равенство, поскольку умножение на 0 всегда дает 0 .

Также бывают уравнения, имеющие несколько корней. У них может быть как конечное, так и бесконечно большое количество корней.

Так, в уравнении x − 2 = 4 есть только один корень – шесть, в x 2 = 9 два корня ­­– три и минус три, в x · ( x − 1 ) · ( x − 2 ) = 0 три корня – нуль, один и два, в уравнении x=x корней бесконечно много.

Теперь поясним, как правильно записывать корни уравнения. Если их нет, то мы так и пишем: «уравнение корней не имеет». Можно также в этом случае указать знак пустого множества ∅ . Если корни есть, то пишем их через запятую или указываем как элементы множества, заключив в фигурные скобки. Так, если у какого-либо уравнения есть три корня – 2 , 1 и 5 , то пишем – 2 , 1 , 5 или < - 2 , 1 , 5 >.

Допускается запись корней в виде простейших равенств. Так, если неизвестная в уравнении обозначена буквой y , а корнями являются 2 и 7 , то мы пишем y = 2 и y = 7 . Иногда к буквам добавляются нижние индексы, например, x 1 = 3 , x 2 = 5 . Таким образом мы указываем на номера корней. Если решений у уравнения бесконечно много, то мы записываем ответ как числовой промежуток или используем общепринятые обозначения: множество натуральных чисел обозначается N , целых ­– Z , действительных – R . Скажем, если нам надо записать, что решением уравнения будет любое целое число, то мы пишем, что x ∈ Z , а если любое действительное от единицы до девяти, то y ∈ 1 , 9 .

Когда у уравнения два, три корня или больше, то, как правило, говорят не о корнях, а о решениях уравнения. Сформулируем определение решения уравнения с несколькими переменными.

Решение уравнения с двумя, тремя и более переменными – это два, три и более значения переменных, которые обращают данное уравнение в верное числовое равенство.

Поясним определение на примерах.

Допустим, у нас есть выражение x + y = 7 , которое представляет из себя уравнение с двумя переменными. Подставим вместо первой единицу, а вместо второй двойку. У нас получится неверное равенство, значит, эта пара значений не будет решением данного уравнения. Если же мы возьмем пару 3 и 4 , то равенство станет верным, значит, мы нашли решение.

Такие уравнения тоже могут не иметь корней или иметь бесконечное их количество. Если нам надо записать два, три, четыре и более значений, то мы пишем их через запятую в круглых скобках. То есть в примере выше ответ будет выглядеть как ( 3 , 4 ) .

На практике чаще всего приходится иметь дело с уравнениями, содержащими одну переменную. Алгоритм их решения мы подробно рассмотрим в статье, посвященной решению уравнений.

Найти корень уравнения? Это просто!

В математике встречаются разнообразные уравнения. Их всегда нужно решать, то есть искать все числа, которые сделают его верным равенством. Пути поиска решений определяются первоначальным видом уравнения. От него же будет зависеть и количество верных значений переменной, которые обозначаются, как корень уравнения. Это число может варьироваться от нуля до бесконечности.

Что подразумевается под уравнением и его корнем?

Из названия понятно, что оно приравнивает две величины, которые могут быть представлены числовыми или буквенными выражениями. Кроме того, они содержат еще неизвестные величины. Самое простое уравнение имеет только одну.

Видов уравнений большое количество, но понятие корня для них всегда одно и то же. Корень уравнения — это такое значение неизвестного числа, при котором уравнение принимает становится верным равенством. Бывают ситуации, когда таких чисел несколько, тогда неизвестная называется переменной.

В алгебре при решении уравнений можно прийти к такой ситуации, что корней не будет совсем. Тогда говорят о том, что оно неразрешимо. А в ответе такого уравнения нужно записать, что решений нет.

Но иногда бывает и противоположное. То есть в процессе многочисленных преобразований появляются посторонние корни. Они не дадут верного равенства при подстановке. Поэтому числа всегда нужно проверять, чтобы избежать ситуации с лишними корнями в ответе. Иначе уравнение не будет считаться решенным.

О линейном уравнении

Оно всегда может быть преобразовано в запись следующего вида: а * х + в = 0. В нем «а» всегда не равно нулю. Чтобы понять сколько корней имеет уравнение, его потребуется решить в общем виде.

  • перенести в правую часть равенства слагаемое «в», заменив его знак на противоположный;
  • разделить обе части получившегося равенства на коэффициент «а».

х = -в/а.

Из него ясно, что ответом будет одно число. То есть всего один корень.

Квадратное уравнение

Его общий вид: а * х 2 + в * х + с = 0. Здесь коэффициенты являются любыми числами, кроме первого, «а», которое не может быть равным нулю. Ведь тогда оно автоматически превратится в линейное. Ответ на вопрос, сколько корней имеет уравнение, уже не будет столь однозначным, как это было в предыдущем случае.

Все будет зависеть от значения дискриминанта. Он вычисляется по формуле Д = в 2 – 4 а * с. После расчетов «Д» может получиться больше, меньше или равным нулю. В первом случае корней уравнения будет два, во втором ответом будет «корней нет», а третья ситуация даст только одно значение неизвестной.

Формулы, которые используют для нахождения корней квадратного уравнения, и содержащие дискриминант

В общем случае, когда «Д» положительное число, не равное нулю, нужно использовать такую формулу:

При равенстве «Д» нулю корень уравнения — это единственное число. Просто потому что квадратный корень из нуля равен нулю. А значит, прибавлять и вычитать нужно будет ноль. От этого число не изменится. Поэтому формулу корня уравнения можно записать без упоминания “Д”:

х = (-в) / (2 * а).

При отрицательном значении дискриминанта извлечь из него квадратный корень не представляется возможным. Поэтому корней у такого уравнения не будет.

Замечание. Это верно для курса школьной программы, в которой не изучаются комплексные числа. Когда они вводятся, то получается, что и в этой ситуации ответов будет два.

Формулы для расчета корней квадратного уравнения, не использующие дискриминант

Речь идет о теореме Виета. Она действительна в случае, когда квадратное уравнение записывается в несколько другом виде:

х 2 + в * х + с = 0.

Тогда формула корней квадратного уравнения сводится к тому, чтобы выполнить решение двух линейных:

Оно решается за счет того, что из первого выводится выражение для одного из корней. И это значение нужно подставить во второе. Так будет найден второй корень, а потом первый.

К этому варианту всегда можно прийти от общего вида квадратного уравнения.

Достаточно только разделить все коэффициенты на «а».

Как быть, если нужно узнать наименьшее значение корня?

Решать уравнение и находить все возможные числа, которые подойдут для ответа. А потом выбрать самое малое. Это и будет наименьший корень уравнения.

Чаще всего такие вопросы встречаются в заданиях, которые имеют степень большую, чем 2, или содержат тригонометрические функции. Примером, когда нужно найти наименьший корень, может служить такое равенство:

2 х 5 + 2 х 4 – 3 х 3 – 3 х 2 + х + 1 = 0.

Чтобы найти каждое значение, которое можно назвать “корень уравнения”, это равенство нужно преобразовать. Первое действие: сгруппировать его члены попарно: первый со вторым и так далее. Потом из каждой пары вынести общий множитель.

В каждой скобке останется (х + 1). Общим множителем в первой из пар будет 2 х 4 , во второй 3 х 2 . Теперь снова нужно выполнить вынесение общего множителя, которым будет являться одинаковая скобка.

После множителя (х + 1) будет стоять (2 х 4 – 3 х 2 + 1). Произведение двух множителей равняется нулю, только если один из них принимает значение, равное нулю.

Первая скобка равна нулю при х = -1. Это будет одним из корней уравнения.

Другие будут получены из уравнения, образованного второй скобкой, приравненной к нулю. Оно биквадратное. Для его решения нужно ввести обозначение: х 2 = у. Тогда уравнение существенно преобразится и примет привычный вид квадратного уравнения.

Его дискриминант равен Д = 1. Он больше нуля, значит корней будет два. Первый корень оказывается равным 1, второй будет 0,5. Но это значения для «у».

Нужно вернуться к введенному обозначению. х1,2 = ± 1, х3,4 = ± √0,5. Все корни уравнения: -1; 1; -√0,5; √0,5. Наименьший из них — -1. Это ответ.

В качестве заключения

Напоминание: все уравнения нужно проверять на то, подходит ли корень. Может быть, он посторонний? Стоит выполнить проверку предложенного примера.

Если подставить в изначально данное уравнение вместо “х” единицу, то получается, что 0 = 0. Этот корень верный.

Если х = -1, то получается такой же результат. Корень тоже подходящий.

Аналогично, при значениях “х” равных -√0,5 и √0,5 опять выходит верное равенство. Все корни подходят.

Этот пример не дал посторонних корней. Такое бывает не всегда. Вполне могло оказаться, что самое маленькое значение не подходило бы при проверке. Тогда пришлось бы выбирать из оставшихся.

Вывод: надо помнить о проверке и внимательно подходить к решению.

Иррациональные уравнения. Исчерпывающий гид (2020)

Хочешь подготовиться к ОГЭ или ЕГЭ по математике на отлично?

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Читайте также:  Что делать, если кота рвет желчью

Что такое иррациональные уравнения

Сначала разберемся что такое рациональные уравнения, а потом поймем что же из себя представляет решение иррациональных уравнений .

Итак, что такое рациональные уравнения , а что – иррациональные:

как думаешь, какое это? Тут сложение, умножение, нет корней, и степеней никаких – рациональное!

– вот тебе и корень из переменной, значит уравнение НЕ рациональное (или иррациональное);

а это – рациональное;

тут вот степень, но она с целым показателем степени ( – целое число) – значит это тоже рациональное уравнение;

даже уравнение с отрицательным показателем степени тоже является рациональным, ведь по сути – это ;

– тоже рациональное, т.к. ;

– а с ним поосторожнее, степень-то дробная, а по свойству корней , как ты помнишь корня в рациональных уравнениях не бывает. Надеюсь, теперь ты сможешь различать, к какому виду относится уравнение.

Иррациональными уравнениями называются уравнения, в которых переменная содержится под знаком корня или знаком возведения в дробную степень. А вот как это выглядит: ; .

Но только отличать рациональное от иррационального недостаточно, тебе же решать их надо! Вся сложность в корнях, так?

Так избавься от корней, вот и все дела!

Если еще не догадался как, то я подскажу – просто возведи в нужную степень обе части уравнения, а потом решай его как простое рациональное уравнение, но проверяй все корни, позже поймешь почему.

Как рациональные уравнения решать помнишь? Если забыл, то советую почитать («Рациональные уравнения»).

Если читать лень, напомню вкратце. Для верного решения рациональных уравнений, ты должен придерживаться следующего руководства:

  1. Понять, точно ли перед тобой рациональное уравнение (убедись, что в нем нет корней);
  2. Определить ОДЗ;
  3. Найти общий знаменатель дробей и умножить на него обе части уравнения;
  4. Решить получившееся целое уравнение;
  5. Исключить из его корней те, которые обращают в ноль знаменатель дробей.

Вроде все объяснил, давай решать, математика слов не любит.

Решение иррациональных уравнений

Уравнение №1

Вот такое вот уравнение: ,

Корень из икса видишь? Значит, какое уравнение?

Верно, оно иррациональное! Что дальше?

Избавляемся от корней, поскольку корень второй степени, то обе части уравнения возводим в квадрат и упрощаем:

Вот и все, почти все, что осталось сделать?

Правильно, решая иррациональное уравнение, обязательно надо проводить проверку полученных корней!

Подставим в исходное уравнение, именно в исходное уравнение, потому, что нам нужно найти его корни, а возведя в квадрат, мы могли получить посторонние корни (об этом позже).

Уравнение №2

О том, что это иррациональное уравнение, думаю, ты и сам знаешь. Как и раньше возводим в квадрат обе части:

Проверка, подставим в исходное уравнение:

– вот это да, ничего тебя тут не смущает? Под квадратным корнем у нас отрицательное число!

Как же так вышло?

А это говорит о том, что это посторонний корень для исходного уравнения, да, это корень уравнения , но оно-то не исходное, его мы получили после преобразований!

В ответе пишем «нет решения».

Уравнение №3

Чтобы разобраться в ситуации мы сделаем что? Будем еще решать, вот уравнение .

После возведения обеих частей в квадрат имеем:

, упрощаем и решаем квадратное уравнение по теореме Виета

У нас два корня, пробуем их подставить в исходное для проверки: подставляем , ,

Что же получается, – посторонний корень?

Думаю, интрига затянулась, настало время объяснить, почему получаются какие-то посторонние корни.

Опять объяснять буду на примере:

, но если мы возведем в квадрат обе части, , .

То же самое получается и в нашем примере с иррациональным уравнением.

В результате преобразования мы можем найти все корни, но могут примешаться и посторонние, которые и надо отфильтровать проверкой, проверив, будет ли соблюдаться равенство исходного уравнения при их подстановке.

А если взять не квадрат, а третью степень:

Какой же отсюда вывод?

Ну, вообще это в свойствах корней почитаешь («Корень степени n > 1 и его свойства»), а так я напомню только основные принципы:

  • Если показатель степени четный, т.е. мы берем корень квадратный или корень степени и т.д.,
  • Если подкоренное выражение отрицательно , то корень не имеет смысла (не существует);
  • Если подкоренное выражение равно нулю, то корень тоже равен нулю;
  • Если подкоренное выражение положительно, то значение корня существует и положительно.

Примеры:

– не существует,

А если показатель степени нечетный:

( ), то корни определены при любом значении подкоренного выражения.

корень отрицателен, если подкоренное выражение отрицательно;

равен нулю, если подкоренное выражение равно нулю;

положителен, если покоренное выражение положительно.

Примеры:

Но не все так просто как хотелось бы, и опять пример:

В этом примере есть два подкоренных выражения и число .

Чтобы избавиться от корня нужно обе части возвести в квадрат, но прежде чем это сделать перенесем в правую часть.

«Зачем?» – спросишь ты.

Дело в том, что если возводить в квадрат в таком виде то упрощать придется дольше, не веришь – попробуй сам, я, пожалуй, избавлю себя от расписывания этого.

Теперь возводим в квадрат обе части и упрощаем.

Понял в чем сложность?

Да, этот метод решения (математики называют его «метод уединения радикала».

Метод уединенного радикала

Радикал, а попросту выражение с корнем надо уединить в одной стороне уравнения) предусматривает возможность того, что уединять и возводить в степень придется не один раз.

Какие замысловатые махинации по уединению одного из выражений с корнем в одной стороне и возведении всего выражения в степень нужно делать пока от корней не избавимся вовсе, чтоб получилось нормальное такое, рациональное уравнение (без корней в смысле).

Но с другой стороны, можно заметить, что на определенной стадии решения становится без дальнейших упрощений понятно, что в уравнении, например, нет решений.

На этапе, когда мы получили вместо того, чтобы тупо возводить все очередной раз в квадрат можно прикинуть, что квадратный корень берется только из неотрицательных чисел, значит, икс в данном случае будет больше либо равен нолю.

А что из этого следует?

А то, что икс не может быть равен , т.к. и икс и корень из икс неотрицательны. В то время, как равенство говорит, будто неотрицательное умноженное на отрицательное равно неотрицательному, но все ведь знают, что минус на плюс дает минус.

Значит это равенство возможно лишь в случае, когда икс равен нолю. Я бы назвал решение методом уединения радикала решением «в лоб», а изложенный сейчас способ более рациональным с точки зрения лишней писанины и подсчетов. Е

сли ты понял то, что я сейчас объяснял, то тебе, возможно, стоит ознакомиться с этой темой в изложении для среднего уровня (см. далее).

Вернемся к нашему несчастному примеру,

Опять возводим в квадрат обе части.

Дальше, как ты уже запомнил нужно подставить корни и в исходное уравнение для проверки, скажу лишь, что тут будет побочным корнем, а ты давай, давай, подставляй, проверь на всякий случай.

А ответ, соответственно будет .

Решать тебе, применять до последнего метод уединения радикала или на определенной стадии решить, что выражение можно не упрощать больше и решение очевидно и сейчас.

Давай сделаем выжимку из сказанного выше.

Решение иррациональных уравнений включает в себя 3 шага:

  1. Уединить одно из выражений с корнем в одной части и избавиться от знака корня (возвести в соответствующую степень обе части уравнения и упростить его) – повторять эту процедуру пока все корни не уйдут или пока решение не станет очевидным;
  2. Решить получившееся рациональное уравнение;
  3. Для проверки подставить получившиеся корни уравнения в исходное уравнение.

Вот, собственно, и все, а чтоб слова которые ты тут прочел не остались просто словами и ты на собственном опыте понял, что здесь к чему, вот порешай:

Примеры для самостоятельной работы:

Решения примеров для самостоятельной работы:

но не проходит проверку

2. реши самостоятельно. Подсказка: Ответ :

3.

, но не проходит проверку.

Так же можно на второй строке решения понять, что равенство не имеет смысла, т.к. , только в случае, когда , но в данном случае не подходит.

СРЕДНИЙ УРОВЕНЬ

Иррациональным называется уравнение, содержащее переменную под знаком радикала (корня).

Чтобы хорошо понять, о чем здесь пойдет речь, повтори темы:

Простейшие иррациональные уравнения

Два примера:

Начнем с самого простого: уравнения вида .

Например: . Как его решить? Как избавиться от корня? Правильно, квадратный корень убирается возведением в квадрат:

А как решить такое: ?

И снова вспомним определение корня степени : – это такое число, которое нужно возвести в степень , чтобы получить . В данном случае эта степень равна :

Итак, общее правило:

Хорошо, а что с этим: ? Все просто: квадрат и корень уничтожаются, и получаем , верно?

Когда мы проходили корни, на это обращали особое внимание: здесь два корня – и , ведь .

Не забываем правило:

Реши сам:

Ответы:

Учет ОДЗ

Помнишь, что такое ОДЗ? ОДЗ (область допустимых значений) уравнения или неравенства – это множество значений переменной, при которых обе части данного уравнения (или неравенства) имеют смысл.

Например, в уравнении присутствует квадратный корень. А квадратный корень не имеет смысла, если подкоренное выражение отрицательно. То есть, в данном случае ОДЗ – это решения неравенства .

Нет необходимости искать ОДЗ в каждой задаче, содержащей корень.

Взять, например, задачу из предыдущей главы: . При возведении в квадрат получаем , то есть подкоренное выражение автоматически неотрицательно! Так зачем лишняя писанина?

Но в некоторых случаях это может быть очень полезно.

Более того, иногда можно решить пример просто найдя ОДЗ.

Пример №1:

Но при таких правая часть уравнения неположительна, а левая, как и любой приличный квадратный корень, неотрицательна.

Тогда равенство возможно только если обе части уравнения равны нулю, то есть при : .

Ответ: .

Пример №2

Решение:

Итак, уравнение имеет смысл только при одном значении переменной. Проверим его – подставим в уравнение. Что получилось? Если получилось , все верно: корень подходит.

Ответ: .

Большинство стандартных иррациональных уравнений не требуют нахождения ОДЗ – как и в приведенном в начале примере, ОДЗ оказывается автоматически учтенной после равносильного преобразования.

Иррациональные уравнения вида √A = √B

Здесь и далее большими буквами , , , и т.д. я буду обозначать не переменные или параметры, а целые выражения, содержащие переменную. Так, общая запись соответствует, например, уравнению : здесь и .

Как решить такое уравнение?

Во-первых, корни равны только когда подкоренные выражения равны: .

Читайте также:  Что делать, если ночью во дворе поцарапали машину

Но недаром мы недавно вспоминали про ОДЗ. Есть ли какие-нибудь ограничения в этом уравнении?

Действительно, чтобы уравнение имело смысл, необходимо, чтобы оба подкоренных выражения были неотрицательны:

Но поскольку эти выражения равны друг другу, достаточно потребовать неотрицательности только одного из них:

Примеры (реши сам):

Ответы:

1. Какое из выражений будем проверять на неотрицательность? Конечно же то, которое проще, то есть :

Все понятно в этих решениях? Если нет, значит ты скорее всего не повторил тему «Квадратные неравенства».

Иррациональные уравнения вида​ A√B = 0

Что написано в левой части? Правильно, произведение выражений. А при каких условиях произведение равно нулю? Конечно, если один из множителей равен нулю, то есть верна совокупность

Но, как ты догадался, это еще не все. Что нужно добавить? ОДЗ. Причем в той части, где , все хорошо.

Но если мы выбираем , придется кое-что сказать и про :

Примеры (реши сам):

Ответы:

Иррациональные уравнения вида √A=B

Наиболее распространённый тип иррациональных уравнений.

Возводим обе части в квадрат:

Все верно? Это ответ?

– все и правда верно, – подходящий корень.

– а вот здесь ошибка. Значит, корень – сторонний.

И правда, мы ведь помним, что результат извлечения квадратного корня всегда неотрицателен! Значит, прежде чем возводить в квадрат, нужно убедиться, что правая часть неотрицательна. Тоже своего рода ОДЗ.

Проверять же ОДЗ корня ( ) здесь снова не нужно (почему?).

Примеры:

Ответы:

Корни степени больше 2

Ты спросишь: а что всё про квадратные корни? Как же быть с остальными степенями?

Спрошу в ответ: а чем они отличаются?

Отличие, на самом деле, есть. Но важна не конкретная степень корня, а четность этой степени.

I. Корни четной степени.

Корни , , , и т.д. степеней очень похожи друг на друга, и принцип решения уравнений с ними абсолютно одинаковый. Дело в том, что корень четной степени можно всегда привести к квадратному (вспоминаем тему «Корень и его свойства»!):

II. Корни нечетной степени.

С нечетными степенями ( , , …) все намного проще!

Дело в том, что корень нечетной степени можно извлекать из любого числа! (И снова, если ты этого не знал, вспомни тему «Корень и его свойства»!)

Теперь никаких дополнительных условий, никаких ограничений – просто возводим все в нужную степень и решаем:

Корень уравнения – определение в математике, формулы нахождения

Общие сведения

Уравнение — это равенство вида F (x1, x2. xn) = G (x1, x2. xn), в котором есть переменные. Определение можно сформулировать следующим образом: уравнением называется равенство, в котором присутствуют неизвестные величины. Решить его — значит найти корни (корень) или доказать, что их нет.

Корень — значение, при подстановке которого равенство принимает истинное значение. Например, корнем уравнения (2х = 4) является 2.

Решением уравнения называется задача по нахождению всех его корней или доказательство их отсутствия. В некоторых случаях условием задачи могут быть наложены ограничения (только целые числа, дробные, комплексные и так далее).

Равносильные функции с неизвестными

В математике существует понятие равносильности или эквивалентности уравнений. Оно означает, что корни заданных равенств совпадают. Кроме того, они считаются эквивалентными, когда не имеют корней. Эквивалентность имеет:

  1. Симметричность: если первое уравнение равносильно второму, то, следовательно, и второе равносильно первому.
  2. Транзитивность: если первое равенство с неизвестными эквивалентно второму, а второе — третьему, то, следовательно, и третье эквивалентно первому.
  3. Третье свойство задается теоремой: если существуют функции F (x) и G (x), которые задаются над областью целостности, то уравнение F (x) * G (x) = 0 эквивалентно двум равенствам вида: F (x) = 0 и G (x) = 0.

Последний прием используется при решении квадратных, кубических и биквадратных уравнений некоторых типов. Метод позволяет упростить поиск неизвестных величин. Например, x 2 — 2x = 0 является квадратным уравнением с параметром С = 0.

Можно найти его дискриминант и вычислить корни. Но существует более простой способ — использование третьего свойства эквивалентности. Следует просто вынести общий множитель за скобки: х * (х-2) = 0. Уравнение «распадается» на два простых: х = 0 и х — 2 = 0. Решаются они очень просто: х1 = 0 и х2 = 2.

Информация о свойствах

Выражения, входящие в состав уравнения, не должны изменять корни, а также приводить к обнаружению посторонних решений. Допустимые преобразования:

  • раскрытие скобок;
  • приведение подобных слагаемых;
  • перенос любого члена уравнения в другую часть с заменой знака на противоположный;
  • к двум частям можно прибавить или вычесть одно выражение, также допускается деление и умножение частей на одинаковые выражения, неравные 0.

При выполнении некоторых операций, приводящих к потере переменных значений, могут возникнуть посторонние корни. В этом случае придется проверять все значения, подставляя их в исходное выражение. Рекомендуется избегать операций, которые приводят к сокращению неизвестных. Это приводит к неверным решениям и образованию дополнительных корней.

Классификация уравнений

Для решения каждого уравнения есть свои правила и алгоритмы. Различают следующие виды уравнений: алгебраические, с параметрами, трансцендентные, функциональные, дифференциальные и другие.

Некоторые виды позволяют записывать значение корня в виде функции или функции с параметром. Для решения применяются специальные аналитические функции, которые могут предоставить сведения о вычислении корней, а также предварительно определить их количество и зависимость от значения параметра. Однако аналитические решения можно применять только для алгебраического типа (не выше 4 степени).

Для трансцендентных уравнений количество аналитических решений ограничено, поскольку не все тригонометрические функции имеют значения, равные нулю. Если невозможно найти аналитическое решение, то применяются вычислительные методы. Они позволяют сузить интервал, в котором находится корень. Следовательно, такое решение не будет точным.

Алгебраический тип

Уравнение вида P (x1, x2. xn) = 0, в котором многочлен представлен неизвестными аргументами, называется алгебраическим. Оно может содержать одно или несколько неизвестных, иметь степень.

Алгебраические уравнения могут быть нескольких типов: линейными, квадратными, кубическими, биквадратными (4 степень). Кроме того, линейные могут объединяться в системы. Решить систему уравнений — значит найти общие корни всех выражений, которые в нее входят.

Линейные и квадратные

Линейным называется уравнение, степень которого соответствует единице. Его можно записать в двух формах — общей и канонической. В первом случае оно имеет следующий вид: a1 * x1 + a2 * x2 + an * xn + b = 0. В последнем случае нужно перенести число b в правую часть: a1 * x1 + a2 * x2 + an * xn = b. Пример: 3х — 2 = 25.

Более сложным типом считается квадратное уравнение, то есть выражение типа А * х 2 + В * x + С = 0 (А не равно 0). Они бывают полными (А, В, С не равны 0) и неполными (какой-нибудь коэффициент равен 0, кроме А). Его можно решить автоматизированным и ручным методами.

Можно воспользоваться специальным программным обеспечением или интернет-ресурсом, который ищет корни квадратного уравнения. Необходимо вписать в специальные поля значения А, В и С. Программа вычислит все за секунду и выдаст результат. Во втором случае нужно применить формулу. Корни квадратного уравнения вычисляются при нахождении дискриминанта и подстановке значений А и В в выражения. Чтобы найти их, следует действовать по алгоритму:

  1. Вычислить дискриминант: D = b 2 — 4 * А * С.
  2. При D > 0 имеется два корня: х1 = [(-B) — sqrt (D)] / (2 * A) и х2 = [(-B) + sqrt (D)] / (2 * A).
  3. Если D = 0, то корень единственный: х = (-B) / (2 * A).
  4. Корней не существует при D 3 + B * x 2 + C * x + D = 0 называется кубическим уравнением. При этом А не может быть равно 0. Для решения применяется кубическая парабола.

Равенство можно разделить на А и выполнить замену такого вида: x = y — (b / (3 * A)). Исходное выражение примет такой вид: y 3 + p * y + q = 0. Коэффициенты p и q вычисляются по следующим формулам: q = [2 * B 3 — 9 * A * B * C + 27 * (A 2 ) * D] / (27 * A 3 ) и p = [(3 * A * C — B 2 ) / (3 * A 2 )].

При решении биквадратных многочленов с неизвестными необходимо рассматривать каждый случай индивидуально. Все они решаются аналитическим способом с помощью замены переменной. Главной задачей является понижение степени.

С параметрами и трансцендентные

В дисциплинах с физико-математическим уклоном можно встретить уравнения с параметрами, от которых зависит их вид. Они могут быть линейными и нелинейными. Для их решения надо найти все системы значений параметров, при которых имеются корни.

Пример — a * x + 1 = 4. Параметр «а» может быть дробью, действительным или натуральным числом, а также состоять из суммы, произведения или разности некоторых переменных. Допустимые значения оговариваются условием задачи. Их называют ограничениями.

Трансцендентные уравнения содержат показательные, логарифмические, тригонометрические и обратные тригонометрические функции. Они не являются алгебраическими. Пример — cos (x) = x и lg (x) = x — 5. Их корни находятся по различным алгоритмам, которые зависят от общего вида. Допускается при решении использование метода замены переменных для упрощения вида.

Функциональные и дифференциальные

Уравнения, которые выражают связь между значениями в нескольких точках, называются функциональными. Этот термин применяется для всех видов, которые невозможно свести к алгебраическому типу. Корнем является функция. Например, корнем выражения F (s) = 2^(s) * ПИ^(s-1) * sin (ПИ * s / 2) * Г (1-s) * f (1-s) является дзета-функция Римана.

Дифференциальное уравнение содержит какую-либо дифференциальную функцию с неизвестным или неизвестными. Все дифуравнения делятся на два типа: обыкновенные и в частных производных. В первый тип входят функции от одного аргумента, во вторую — функции, зависящие от многих аргументов. Для нахождения корней следует найти функцию, удовлетворяющую условию и имеющую на интервале производные.

Примеры решения

На ЕГЭ могут быть различные задания по математике. Среди них могут быть линейные и квадратные уравнения. Например, дано выражение вида: 3 (х-9) + 2х (х-3)= 2 (х-2)(х+2). Нужно найти значение переменной. Алгоритм следующий:

  1. Раскрыть скобки: 3х — 27 + 2х 2 — 6x = 2x 2 — 8.
  2. Привести подобные слагаемые: -3х = 18.
  3. Найти корень: х = – 6.

Нет смысла находить точки пересечения двух парабол (x 2 — 3x + 2 = 0 и y 2 — 5y + 6 = 0) с осями координат. Для получения быстрого результата достаточно воспользоваться теоремой Виета. Точки пересечения вычисляются следующим образом: x1 = 1, x2 = 2, y1 = 2 и y2 = 3.

Чтобы найти точки пересечения параболы (3x 2 — 10x + 5 = 0) с осями декартовой системы координат, следует решить квадратное уравнение:

  1. Найти дискриминант: D = (-b)^2 — 4AC = 100 — 4 * 3 * 5 = 100 — 60 = 40 > 0.
  2. Первый корень: x1 = [-B — sqrt (D)] / (2 * A) = [10 — 2 * sqrt (10)] / (2 * 3) = (5 — sqrt (10)) / 3.
  3. Второй: x2 = (5 + sqrt (10)) / 3.

Парабола пересекает ось ОХ в точках x1 = (5 — sqrt (10)) / 3 и x2 = (5 + sqrt (10)) / 3. Выражения можно не вычислять, поскольку получатся приближенные значения.

Таким образом, для нахождения корней уравнения необходимо сначала его идентифицировать, привести к упрощенному виду, понизить степень (при необходимости), а затем применить какой-либо из алгоритмов.

Ссылка на основную публикацию
Adblock
detector