Что такое производная - Flm-Krym.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Что такое производная

Производная, основные определения и понятия

Данная статья рассматривает основные понятия, для решения задач с производными с одной переменной.

Пусть х – это аргумент функции f ( x ) и ∆ x возьмем малое число, не равное 0 . Значение ∆ x называют приращением аргумента функции и читают как «дельта икс». На рисунке видно, что красная линия относится для изменений аргумента от значения х до x + ∆ x .

Когда значение аргумента x 0 переходит к x 0 + ∆ x , тогда и значение функции меняется от f ( x 0 ) до f ( x 0 + ∆ x ) , если имеется условие монотонности функции из отрезка [ x 0 ; x 0 + ∆ x ] . Приращение функции f ( x ) – это разность f ( x 0 + ∆ x ) – f ( x 0 ) = ∆ f ( x ) приращения аргумента. Это приведено на рисунке, расположенном ниже.

Для полного уяснения рассмотрим на конкретном примере. Если взять функцию f ( x ) = sin ( x 2 ) , тогда следует зафиксировать точку x 0 = 1 . 6 и приращение аргумента вида ∆ x = 0 . 4 . Тогда получим, что приращение функции при переходе от x 0 = 1 . 6 к x 0 + ∆ x = 1 . 6 + 0 . 4 = 2 будет равно:

∆ f ( x ) = ∆ sin ( x 2 ) = sin ( ( x 0 + ∆ x ) 2 ) – sin ( x 0 2 ) = = sin 2 2 – sin 1 . 6 2 = sin 4 – sin 2 . 56 ≈ – 1 . 306

Так как приращение ∆ f ( x ) отрицательное из отрезка [ 1 . 6 ; 2 ] , то это указывает на убывание функции. Обозначим это графически.

Определение производной функции в точке

Когда функция вида f ( x ) определена из промежутка ( a ; b ) , тогда x 0 и x 0 + ∆ x считаются точками данного промежутка. Производная функции f ( x ) в точке x 0 – это предел отношений приращения функции к приращению аргумента, когда ∆ x → 0 . Данное определение записывается как f ‘ ( x 0 ) = lim ∆ x → 0 ∆ f ( x ) ∆ x .

Если последний предел принимает конкретное значение, тогда существует конечная производная в точке. Когда предел бесконечен, то и сама производная бесконечна в этой точке. Когда предел не существует, то и производной в заданной точке не существует.

Функция f ( x ) дифференцируема в точке x 0 , если конечная производная в ней существует.

Когда функция вида f ( x ) дифференцируема в каждой точке из промежутка ( a ; b ) , тогда функцию называют дифференцируемой на заданном промежутке. Отсюда получаем, что любая точка х из промежутка ( a ; b ) может принимать значения функции f ‘ ( x ) , иначе говоря, имеет место определение новой функции вида f ‘ ( x ) , которая называется производной функции f ( x ) из интервала ( a ; b ) .

Нахождение производной иначе называют дифференцированием

Из выше указанного получаем, что производная в точке является числом, а производная функции на промежутке является функцией. Когда необходимо вычислять производную, обязательно обращаемся к нахождению переделов.

Найти производную функции sin ( 2 x ) в точке x 0 = π 6 .

Для нахождения производной в точке необходимо начать с написания предела отношения приращения функции к приращению аргумента, применив тригонометрические формулы. Получаем, что

( sin ( 2 x 0 ) ) ‘ = lim ∆ x → 0 ∆ sin ( 2 x 0 ) ∆ x = lim ∆ x → 0 sin ( 2 ( x 0 + ∆ x ) ) – sin ( 2 x 0 ) ∆ x = = lim ∆ x → 0 2 · sin 2 ( x 0 + ∆ x ) – 2 x 0 3 · cos 2 ( x 0 + ∆ x ) + 2 x 0 2 ∆ x = = 2 · lim ∆ x → 0 sin ( ∆ x ) · cos ( 2 x 0 + ∆ x ) ∆ x

Для упрощения используем первый замечательный предел и в результате получаем, что

( sin ( 2 x 0 ) ) ‘ = 2 · lim ∆ x → 0 sin ( ∆ x ) · cos ( 2 x 0 + ∆ x ) ∆ x = = 2 · lim ∆ x → 0 sin ( ∆ x ) ∆ x · lim ∆ x → 0 cos ( 2 x 0 + ∆ x ) = = 2 · 1 · cos ( 2 x 0 + 0 ) = 2 cos ( 2 x 0 ) = 2 cos 2 · π 6 = = 2 cos π 3 = 2 · 1 2 = 1

Ответ: ( sin ( 2 x 0 ) ) ‘ = 1 .

Найти производную функции f ( x ) = 3 x 3 – 1 из промежутка x ∈ 1 3 3 ; + ∞

Для поиска производной из интервала понимаем, что результат должен быть функцией. Тогда x 0 = x , где значение х возьмем любое число из заданного промежутка x ∈ 1 3 3 ; + ∞ . Из определения видно, что производной считают отношение приращения функции на приращение аргумента, который стремится к нулю. Запишем

f ‘ ( x ) = 3 x 3 – 1 ‘ = lim ∆ x → 0 f ( x + ∆ x ) – f ( x ) ∆ x = = lim ∆ x → 0 3 ( 3 + ∆ x ) 3 – 1 – 3 x 3 – 1 ∆ x = ” open=” 0 0

Получаем неопределенность в результате. Поэтому следует произвести домножение на сопряженное выражение для применения формул сокращенного умножения, приведения подобных слагаемых и последующим сокращением выражения. Тогда получим, что

f ‘ ( x ) = lim ∆ x → 0 3 ( x + ∆ x ) 3 – 1 – 3 x 3 – 1 ∆ x = = lim ∆ x → 0 ( 3 ( x + ∆ x ) 3 – 1 – 3 x 3 – 1 ) ( 3 ( x + ∆ x ) 3 – 1 + 3 x 3 – 1 ) ∆ x · ( 3 ( x + ∆ x ) 3 – 1 + 3 x 3 – 1 ) = = lim ∆ x → 0 3 ( x + ∆ x ) 3 – 1 – 3 x 3 – 1 2 ∆ x · 3 ( x + ∆ x ) 3 – 1 + 3 x 3 – 1 = = lim ∆ x → 0 3 ( x + ∆ x ) 3 – 1 – ( 3 x 3 – 1 ) ∆ x · 3 ( x + ∆ x ) 3 – 1 + 3 x 3 – 1 = = 3 · lim ∆ x → 0 3 x 2 + 3 x ∆ x + ( ∆ x ) 2 3 ( x + ∆ x ) 3 – 1 + 3 x 3 – 1 = = 3 · 3 x 2 + 3 x · 0 + ( 0 ) 2 3 ( x + 0 ) 3 – 1 + 3 x 3 – 1 = 9 x 2 2 3 x 3 – 1

Ответ: 3 x 3 – 1 ‘ = 9 x 2 2 3 x 3 – 1 и x ∈ 1 3 3 ; + ∞

Для решения таких примеров необходимо учитывать то, что область определения функции f ( x ) может не совпадать с областью определения производной этой функции. Предыдущий пример имеет область определения вида D f x : x ∈ [ 1 3 3 ; + ∞ ) , а производная определена на интервале D f x : x ∈ 1 3 3 ; + ∞ . То есть при дифференцировании функция f ‘ ( x ) – это производная заданной функции f ( x ) из промежутка x ∈ D ( f ( x ) ) D ( f ‘ ( x ) ) .

Получение формул таблиц производных основано на определении производной. Они достаточно удобны, что способствует скорейшему дифференцированию сложных выражений. Использование понятия производной применяют для доказательств правил дифференцирования.

Производная функции. Геометрический смысл производной

Производная функции — одна из сложных тем в школьной программе. Не каждый выпускник ответит на вопрос, что такое производная.

В этой статье просто и понятно рассказано о том, что такое производная и для чего она нужна. Мы не будем сейчас стремиться к математической строгости изложения. Самое главное — понять смысл.

Производная — это скорость изменения функции.

На рисунке — графики трех функций. Как вы думаете, какая из них быстрее растет?

Ответ очевиден — третья. У нее самая большая скорость изменения, то есть самая большая производная.

Вот другой пример.

Костя, Гриша и Матвей одновременно устроились на работу. Посмотрим, как менялся их доход в течение года:

На графике сразу все видно, не правда ли? Доход Кости за полгода вырос больше чем в два раза. И у Гриши доход тоже вырос, но совсем чуть-чуть. А доход Матвея уменьшился до нуля. Стартовые условия одинаковые, а скорость изменения функции, то есть производная, — разная. Что касается Матвея — у его дохода производная вообще отрицательна.

Интуитивно мы без труда оцениваем скорость изменения функции. Но как же это делаем?

На самом деле мы смотрим, насколько круто идет вверх (или вниз) график функции. Другими словами — насколько быстро меняется у с изменением х. Очевидно, что одна и та же функция в разных точках может иметь разное значение производной — то есть может меняться быстрее или медленнее.

Производная функции обозначается .

Покажем, как найти с помощью графика.

Нарисован график некоторой функции . Возьмем на нем точку с абсциссой . Проведём в этой точке касательную к графику функции. Мы хотим оценить, насколько круто вверх идет график функции. Удобная величина для этого — тангенс угла наклона касательной.

Производная функции в точке равна тангенсу угла наклона касательной, проведённой к графику функции в этой точке.

Обратите внимание — в качестве угла наклона касательной мы берем угол между касательной и положительным направлением оси .

Иногда учащиеся спрашивают, что такое касательная к графику функции. Это прямая, имеющая на данном участке единственную общую точку с графиком, причем так, как показано на нашем рисунке. Похоже на касательную к окружности.

Найдем . Мы помним, что тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему. Из треугольника :

Мы нашли производную с помощью графика, даже не зная формулу функции. Такие задачи часто встречаются в ЕГЭ по математике под номером .

Читайте также:  Что сделать, чтобы прибывало молоко

Есть и другое важное соотношение. Вспомним, что прямая задается уравнением

Величина в этом уравнении называется угловым коэффициентом прямой. Она равна тангенсу угла наклона прямой к оси .

Мы получаем, что

Запомним эту формулу. Она выражает геометрический смысл производной.

Производная функции в точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке.

Другими словами, производная равна тангенсу угла наклона касательной.

Мы уже сказали, что у одной и той же функции в разных точках может быть разная производная. Посмотрим, как же связана производная с поведением функции.

Нарисуем график некоторой функции . Пусть на одних участках эта функция возрастает, на других — убывает, причем с разной скоростью. И пусть у этой функции будут точки максимума и минимума.

В точке функция возрастает. Касательная к графику, проведенная в точке , образует острый угол с положительным направлением оси . Значит, в точке производная положительна.

В точке наша функция убывает. Касательная в этой точке образует тупой угол с положительным направлением оси . Поскольку тангенс тупого угла отрицателен, в точке производная отрицательна.

Вот что получается:

Если функция возрастает, ее производная положительна.

Если убывает, ее производная отрицательна.

А что же будет в точках максимума и минимума? Мы видим, что в точках (точка максимума) и (точка минимума) касательная горизонтальна. Следовательно, тангенс угла наклона касательной в этих точках равен нулю, и производная тоже равна нулю.

Точка — точка максимума. В этой точке возрастание функции сменяется убыванием. Следовательно, знак производной меняется в точке с «плюса» на «минус».

В точке — точке минимума — производная тоже равна нулю, но ее знак меняется с «минуса» на «плюс».

Вывод: с помощью производной можно узнать о поведении функции всё, что нас интересует.

Если производная положительна, то функция возрастает.

Если производная отрицательная, то функция убывает.

В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».

В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».

Запишем эти выводы в виде таблицы:

возрастаетточка максимумаубываетточка минимумавозрастает
++

Ты нашел то, что искал? Поделись с друзьями!

Сделаем два небольших уточнения. Одно из них понадобится вам при решении задач ЕГЭ. Другое — на первом курсе, при более серьезном изучении функций и производных.

Возможен случай, когда производная функции в какой-либо точке равна нулю, но ни максимума, ни минимума у функции в этой точке нет. Это так называемая точка перегиба:

В точке касательная к графику горизонтальна, и производная равна нулю. Однако до точки функция возрастала — и после точки продолжает возрастать. Знак производной не меняется — она как была положительной, так и осталась.

Бывает и так, что в точке максимума или минимума производная не существует. На графике это соответствует резкому излому, когда касательную в данной точке провести невозможно.

А как найти производную, если функция задана не графиком, а формулой? В этом случае применяется таблица производных.

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

Обучающее видео
БЕСПЛАТНО

Техническая поддержка:
help@ege-study.ru (круглосуточно)

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Все поля обязательны для заполнения

Премиум

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса – от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения. Автор видеокурса Премиум – репетитор-профессионал Анна Малкова.

Получи пятерку

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля – до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

Задачи комплекта «Математические тренинги – 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.

Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

Как пользоваться?

  1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
  2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
  3. Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
  4. Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
  5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.

Стоимость комплекта «Математические тренинги – 2019» – всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.

Это пробная версия онлайн курса по профильной математике.

Вы получите доступ к 3 темам, которые помогут понять принцип обучения, работу платформы и оценить ведущую курса Анну Малкову.

— 3 темы курса (из 50).
— Текстовый учебник с видеопримерами.
— Мастер-класс Анны Малковой.
— Тренажер для отработки задач.

Регистрируйтесь, это бесплатно!

Нажимая на кнопку, вы даете согласие на обработку своих персональных данных

Решение производной для чайников: определение, как найти, примеры решений

Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная – одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Геометрический и физический смысл производной

Пусть есть функция f(x), заданная в некотором интервале (a, b). Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0. Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:

Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.

Иначе это можно записать так:

Какой смысл в нахождении такого предела? А вот какой:

Геометрический смысл производной: производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.

Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.

Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t. Средняя скорость за некоторый промежуток времени:

Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:

Кстати, о том, что такое пределы и как их решать, читайте в нашей отдельной статье.

Приведем пример, иллюстрирующий практическое применение производной. Пусть тело движется то закону:

Нам нужно найти скорость в момент времени t=2c. Вычислим производную:

Правила нахождения производных

Сам процесс нахождения производной называется дифференцированием. Функция, которая имеет производную в данной точке, называется дифференцируемой.

Как найти производную? Согласно определению, нужно составить отношение приращения функции и аргумента, а затем вычислить предел при стремящемся к нулю приращении аргумента. Конечно, можно вычислять все производные так, но на практике это слишком долгий путь. Все уже давно посчитано до нас. Ниже приведем таблицу с производными элементарных функций, а затем рассмотрим правила вычисления производных, в том числе и производных сложных функций с подробными примерами.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Правило первое: выносим константу

Константу можно вынести за знак производной. Более того – это нужно делать. При решении примеров по математике возьмите за правило – если можете упростить выражение, обязательно упрощайте.

Пример. Вычислим производную:

Правило второе: производная суммы функций

Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.

Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.

Найти производную функции:

Правило третье: производная произведения функций

Производная произведения двух дифференцируемых функций вычисляется по формуле:

Пример: найти производную функции:

Решение:

Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.

В вышеуказанном примере мы встречаем выражение:

В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.

Правило четвертое: производная частного двух функций

Формула для определения производной от частного двух функций:

Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.

С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис. За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.

Что такое производная

Пусть в некоторой окрестности точки определена функция Производной функции f в точке x называется предел, если он существует,

Общепринятые обозначения производной функции y = f(x) в точке x :

Заметим, что последнее обычно обозначает производную по времени (в теоретической механике).

Дифференцируемость

Производная f‘(x) функции f в точке x , будучи пределом, может не существовать или существовать и быть конечной или бесконечной. Функция f является дифференцируемой в точке x тогда и только тогда, когда её производная в этой точке существует и конечна:

Для дифференцируемой в x функции f в окрестности U(x) справедливо представление

f(x) = f(x) + f‘(x)(xx) + o(xx) при

Замечания

  • Назовём Δx = xxприращением аргумента функции, а Δy = f(x + Δx) − f(x) приращением значения функции в точке x. Тогда
  • Пусть функция имеет конечную производную в каждой точке Тогда определена произво́дная фу́нкция
  • Функция, имеющая конечную производную в точке, непрерывна в ней. Обратное не всегда верно.
  • Если производная функция сама является непрерывной, то функцию f называют непреры́вно дифференци́руемой и пишут:

Геометрический и физический смысл производной

Тангенс угла наклона касательной прямой

Если функция имеет конечную производную в точке x, то в окрестности U(x) её можно приблизить линейной функцией

Функция fl называется касательной к f в точке x. Число f‘(x) является угловым коэффициентом или тангенсом угла наклона касательной прямой.

Скорость изменения функции

Вообще производная функции y = f(x) в точке x выражает скорость изменения функции в точке x , то есть скорость протекания процесса, описанного зависимостью y = f(x).

Производные высших порядков

Понятие производной произвольного порядка задаётся рекуррентно. Полагаем

Если функция f дифференцируема в x , то производная первого порядка определяется соотношением

Пусть теперь производная n -го порядка f (n) определена в некоторой окрестности точки x и дифференцируема. Тогда

Производные высших порядков обозначаются символами:

Когда n мало, используются штрихи, римские цифры или точки:

f (3) (x) = f”'(x) = f III (x), и т. д.

Примеры

  • Пусть f(x) = x 2 . Тогда

  • Пусть f(x) = | x | . Тогда если то

f‘(x) = sgnx,

где sgn обозначает функцию знака. Если x = 0, то а следовательно f‘(x) не существует.

Правила дифференцирования

Операция нахождения производной называется дифференцированием. При выполнении этой операции часто приходится работать с частными, суммами, произведениями функций, а также с «функциями функций», то есть сложными функциями. Исходя из определения производной, можно вывести правила дифференцирования, облегчающие эту работу.

  • (f + g)’ = f‘ + g‘ (производная суммы равна сумме производных)
  • (отсюда, в частности, следует, что производная произведения функции и константы равна произведению производной этой функции на константу)
  • Если функция задана параметрически:

, то

Следующие свойства производной служат дополнением к правилам дифференцирования:

  • если функция дифференцируема на интервале (a,b) , то она непрерывна на интервале (a,b) ;
  • если функция имеет локальный максимум/минимум при значении аргумента, равном x , то f‘(x) = 0 (это так называемая лемма Ферма);
  • производная данной функции единственна, но у разных функций могут быть одинаковые производные.

Производная вектор-функции по параметру

Определим производную вектор-функции по параметру:

.

Если производная в точке существует, вектор-функция называется дифференцируемой в этой точке. Координатными функциями для производной будут .

Свойства производной вектор-функции (всюду предполагается, что производные существуют):

  • — производная суммы есть сумма производных.
  • — здесь — дифференцируемая скалярная функция.
  • — дифференцирование скалярного произведения.
  • — дифференцирование векторного произведения.
  • — дифференцирование смешанного произведения.

См. также

Литература

  • В. Г. Болтянский,Что такое дифференцирование?, «Популярные лекции по математике», Выпуск 17, Гостехиздат 1955 г., 64 стр.
  • В. А. Гусев, А. Г. Мордкович «Математика»

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое “Производная функция” в других словарях:

производная функция — — [http://www.iks media.ru/glossary/index.html?gloss >Справочник технического переводчика

Производная функция — см. Дифференциальное исчисление … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Производная функции — У этого термина существуют и другие значения, см. Производная. Иллюстрация понятия производной Производная&# … Википедия

Функция Гомпертца — Кривая Гомпертца или функция Гомпертца, названная в честь Бенджамина Гомпертца (англ) , является сигмовидной функцией. Это тип математической модели для временных рядов, где рост медленнее в начале и в конце периода. Она напоминает… … Википедия

производная — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] производная Для функции от одной переменной f(x) — производная df/dx — это скорость ее изменения, т … Справочник технического переводчика

Производная — [derivative]. Для функции от одной переменной f(x) производная df/dx это скорость ее изменения, т.е. Необходимы различные обобщения этого понятия на более сложные функции. Например, если рассматривается функция многих переменных f (x1, … … Экономико-математический словарь

ПРОИЗВОДНАЯ — (derivative) Темп приращения значения функции при приращении ее аргумента в какой либо точке, если сама функция в этой точке определена. На графике первая производная функции показывает угол ее наклона. Если у=f(x), ее первая производная в точке… … Экономический словарь

функция — Команда или группа людей, а также инструментарий или другие ресурсы, которые они используют для выполнения одного или нескольких процессов или деятельности. Например, служба поддержки пользователей. Этот термин также имеет другое значение:… … Справочник технического переводчика

Функция — [function] 1. Зависимая переменная величина; 2. Соответствие y=f(x) между переменными величинами, в силу которого каждому рассматриваемому значению некоторой величины x (аргумента или независимой переменной) соответствует определенное значение… … Экономико-математический словарь

Функция Минковского — Функция Минковского. Функция «вопросительный знак» Минковского построенная Германом Минковским монотонная с … Википедия

Что такое производная?

Произодная по-простому

Немного о твоей будущей зарплате

Попробую объяснить несколько иначе, чем в школе.

Вы заканчиваете школу, поступаете в университет и начинаете подрабатывать:

В первый год после школы вы зарабатываете 0,5 у.е. (условных единиц).

Вы хорошо учитесь, устраиваетесь по специальности или находите свое призвание, и ваши дела постепенно, но идут в гору!

Какой молодец! Заработок растет не по годам, а по часам!

Если посмотреть на этот график внимательнее, то можно увидеть сходство с ветвью параболлы, которая в самом простом случае задается уравнением y = x². Если это понятно, то дальше все проще!

Интересно, а на сколько увеличивался заработок из года в год:

I год: 0,5 − 0 = 0,5 .

II год: 2 − 0,5 = 1,5.

III год: 4,5 − 2 = 2,5.

IV год: 8 − 4,5 = 3,5.

Получается, что наш доход каждый год возрастал равномерно. Вот что выйдет, если построить график:

То есть все наши старания каждый год были постоянными, достаточно было ежегодно улучшать свой доход на 1 у.е.

Нетрудно заметить, что график заработка задается уравнением y = 0,5x².

А график увеличения заработка залается прямой y = x − 0,5.

Кто знает толк в производных, скажет « Неверно! ». Конечно, производная от 0,5x² не будет равна x − 0,5, и это мы обсудим ближе к концу статьи.

Изменение заработка для нескольких лет

Для того, чтобы посчитать скорость изменения заработка, нужно взять один из «треугольников» с графика, например первый, и разделить длину вертикального катета (Δy) (в данном случае это 12,5 − 8 = 4,5) на длину горизонтального (Δx) (тут он равен 1).

Получится 4,5 / 1 = 4,5.

Таким образом, разделив вертикальный катет на горизонтальный, мы получаем скорость изменения функции, что показывает второй график.

Но как же это все относится к производным?

А так, что производная показывает «скорость» изменения функции!

Функция заработка предсталяет из себя график параболы (график функции) .

В тоже время функция увеличения заработка каждый год представляет прямую (график производной функции).

Однако прежде, чем ты расскажешь это своим друзьям, давай проверим, а если мы возьмем другой треугольник (в этот раз второй).

Вертикальный катет: 24,5 − 18 = 6,5.

Горизонтальный катет: 1.

Разделим: 6,5 / 1 = 6,5 — не сходится с первым треугольником!

А если объединить второй и третий треугольник?

Вертикальный катет: 40,5 − 18 = 22,5.

Горизонтальный катет: 9 − 6 = 3.

Разделим: 22,5 / 3 = 7,5 — опять не сходится!

Какая же тогда производная правильная?

Для того, чтобы верно найти производную, нужно взять как можно меньший горизонтальный катет – максимальное приближение (Δх)!

Сам график задается уравнением y = 0,5x².

Тогда возьмем x₁ = 4 => y₁ = 0,5 × 4² = 8, а при x₂ = 4,001 => y₂ = 0,5 × 4,001² ≈ 8,004.

Получается: Δy = 8,004 − 8 = 0,004, Δх= 4,001 − 4 = 0,001.

Производная: Δy / Δх = 0,004 / 0,001 = 4.

И что же тогда производная?

Производная — это скорость изменения функции при самых маленьких значениях Δх (наименьших значениях горизонтального катета).

Именно поэтому производную и называют тангенсом (отношение противолежащего катета к прилежащему) угла наклона этой функции.

Если же мы посчитаем производную для каждой точки, получится такой график функции:

А это уже похоже на правду!

Производная от y = 0,5x² будет равна y = х (именно такой график получился у нас).

Погрешность в данном графике вызвана плохим приближением по оси х (в данном случае Δх = 1), из-за чего появляется неточность.

Конечно, можно не делать такое большое количество действий, проверяя точки.

Есть готовые формулы для базовых функций, пользуйтесь ими, если хотите облегчить себе жизнь.

  1. Производные встречаются почти во всех областях: от медицины до финансов, по сути дела производная, показывая скорость изменения функции, предсказывает дальнейшее поведение функции.
  2. Представьте матрешку, так же как в каждой матрешке внутри есть следующая, так и функция скрывает в себе производную. У каждой функции есть своя производная функции. Так же можно брать от производной функции еще одну производную и повторять действие до бесконечности.
  3. Производная функции показывает скорость изменения самой функции. Так же, как у вас есть родители и предки (предыдущии поколения), которые вам передали какие-то отличительные особенности, так и у функции есть производная, которая передает ей скорость ее изменения.
Ссылка на основную публикацию
Adblock
detector