Как найти диаметр окружности - Flm-Krym.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Как найти диаметр окружности

Окружность

Окружность – геометрическое место точек плоскости, расстояние от которых до центра окружности равно.

Центр окръжности

Радиус: расстояние от центра окружности до его границы.

Диаметр: наибольшее расстояние от одной границы окружности до другой. Диаметр равен двум радиусам.

$d = 2cdot r$

Периметр (длина окружности): длина границы окружности.

Длина окружности $= pi cdot$ диаметр $= 2 cdot pi cdot$ радиус
Длина окружности $= pi cdot d = 2 cdot pi cdot r$

$pi$ – pi: число, равное 3,141592. или $approx frac<22><7>$, то есть отношение $frac>>$ любого окружности.

Дуга: изогнутая линия, которая является частью окружности.

Дуги окружности измеряется в градусах или радианах.
Например: 90° или $frac<2>$ – четверть круга,
180° или $pi$ – половина круга.
Сумма всех дуг окружности составляет 360° или $2pi$

Хорда: отрезок прямой, соединяющей две точки на окружности.

Сектор: похож на часть пирога (клин).

Касательная к окружности: прямая, перпендикулярна к радиусу, и имеющая ТОЛЬКО одну общую точку с окуржностью.

Формулы

Длина окружности $=pi cdot text <диаметр>= 2cdot pi cdot text<радиус>$

Площадь круга $= pi cdot$ радиус 2

Радиус обозначается как r , диаметр как d , длина окружности как P и площадь как S .

Площадь сектора круга

Площадь сектора круга K : (с центральным углом $theta$ и радиусом $r$).
Если угол $theta$ в градусах, тогда площадь = $frac <360>pi r^2$
Если угол $theta$ в радианах, тогда площадь, тогда площадь = $frac <2>r^2$

Центральный угол

Если длина дуги составляет $theta$ градуов или радиан, то значение центрального угла также $theta$ (градусов или радиан).

Если вы знаете длину дуги (в дюймах, ярдах, футах, сантиметрах, метрах . ) вы можете найти значение её соответствующего центрального угла ($theta$) по формуле:

Вписанный угол

Вписанный угол это угол с вершиной на окружности и со сторонами, которые содержат хорды окружности.
На рисунке, угол APB это вписанный угол.

Пример:
$w > $angle APB = frac<84> <2>= 42^circ$

Углы между двумя хордами

Случай 1: два секущие пересекаются внутри окружности.

Когда две секущие пересекаются внутри окружности, величина образованных угла, в два раза меньше суммы величин дуг, на которые они опираются. На рисунке дуга AB и дуга CD равны 60° и 50° тогда углы 1 и 2 равны $frac<1><2>(60^circ + 50^circ)=55^circ$

Случай 2: две секущие пересекаются вне окружности.

Иногда секущие пересекаются за пределами окружности. Когда это случается, величина образующихся углов равна половине разности дуг, на которые они опираются.

$angle ABC =frac<1><2>(x – y)$

На рисунке дуга AB=80° и дуги CD=30°.
$angle ABC = frac<1><2>(80 – 30) = frac<1> <2>cdot 50 = 25^circ$

Хорды


Если две хорды пересекаются внутри окружности, как на рисунке выше, тогда:

Вычисление радиуса: как найти длину окружности зная диаметр

Очень часто при решении школьных заданий по математике или физике возникает вопрос — как найти длину окружности, зная диаметр? На самом деле никаких сложностей в решении этой проблемы нет, нужно только чётко представлять себе, какие формулы, понятия и определения требуются для этого….

Основные понятия и определения

  1. Радиус — это линия, соединяющая центр окружности и её произвольную точку. Он обозначается латинской буквой r.
  2. Хордой называется линия, соединяющая две произвольные точки лежащие на окружности.
  3. Диаметр — это линия, соединяющая два пункта окружности и проходящая через её центр. Он обозначается латинской буквой d.
  4. Окружность — это линия, состоящая из всех точек, находящихся на равном расстоянии от одной избранной точки, именуемой её центром. Её длину будем обозначать латинской буквой l.

Площадь круга — это вся территория, заключённая внутри окружности. Она измеряется в квадратных единицах и обозначается латинской буквой s.

Пользуясь нашими определениями, приходим к выводу, что диаметр круга равен его самой большой хорде.

Внимание! Из определения, что такое радиус круга можно узнать, что такое диаметр круга. Это два радиуса отложенные в противоположных направлениях! Диаметр окружности.

Нахождение длины окружности и её площади

Если нам дан радиус окружности, то диаметр окружности описывает формула d = 2*r. Таким образом, для ответа на вопрос, как найти диаметр круга, зная его радиус, достаточно последний умножить на два.

Читайте также:  Какого рода существительные

Формула длины окружности, выраженная через её радиус, имеет вид l = 2*П*r.

Внимание! Латинской буквой П (Пи) обозначается отношение длины окружности к её диаметру, и это есть непериодическая десятичная дробь. В школьной математике она считается заранее известной табличной величиной, равной 3,14!

Теперь перепишем предыдущую формулу, чтобы найти длину окружности через её диаметр, помня, в чём состоит его разница по отношению к радиусу. Получится: l = 2*П*r = 2*r*П = П*d.

Из курса математики известно, что формула, описывающая площадь окружности, имеет вид: s = П*r^2.

Теперь перепишем предыдущую формулу, чтобы найти площадь окружности через её диаметр. Получим,

s = П*r^2 = П*d^2/4.

Одним из самых сложных заданий в данной теме является определение площади круга через длину окружности и наоборот. Воспользуемся тем, что s = П*r^2 и l = 2*П*r. Отсюда получим r = l/(2*П). Подставим полученное выражение для радиуса в формулу для площади, получится: s = l^2/(4П). Абсолютно аналогичным способом определяется и длина окружности через площадь круга.

Определение длины радиуса и диаметра

Важно! Прежде всего узнаем, как измерить диаметр. Это очень просто проводим любой радиус, продлеваем его в противоположную сторону до пересечения с дугой. Циркулем отмеряем полученное расстояние и с помощью любого метрического инструмента узнаем искомое!

Ответим на вопрос, как узнать диаметр окружности, зная её длину. Для этого выразим его из формулы l = П*d. Получим d = l/П.

Мы уже знаем как из длины окружности можно найти её диаметр, точно также найдём и радиус.

l = 2*П*r, отсюда r = l/2*П. Вообще, чтобы узнать радиус, его нужно выражать через диаметр и наоборот.

Пусть теперь требуется определить диаметр, зная площадь окружности. Используем то, что s = П*d^2/4. Выразим отсюда d. Получится d^2 = 4*s/П. Для определения самого диаметра потребуется извлечь корень квадратный из правой части. Получится d = 2*sqrt(s/П).

Это интересно! Первый признак равенства треугольников: доказательство

Решение типовых заданий

  1. Узнаем, как найти диаметр, если дана длина окружности. Пусть она равняется 778,72 километра. Требуется найти d. d = 778,72/3,14 = 248 километров. Вспомним, что такое диаметр и сразу определим радиус, для этого определённое выше значение d разделим пополам. Получится r = 248/2 = 124 километра.
  2. Рассмотрим, как найти длину данной окружности, зная её радиус. Пусть r имеет значение 8 дм 7 см. Переведём это все в сантиметры, тогда r будет равняться 87 сантиметров. Воспользуемся формулой, как найти неизвестную длину круга . Тогда наше искомое будет равняться l = 2*3,14*87 = 546,36 см. Переведём наше полученное значение в целые числа метрических величин l = 546,36 см = 5 м 4 дм 6 см 3,6 мм.
  3. Пусть нам требуется определить площадь данной окружности по формуле через её известный диаметр. Пусть d = 815 метров. Вспомним формулу, как найти площадь окружности. Подставим сюда данные нам значения, получим s = 3,14*815^2/4 = 521416,625 кв. м.
  4. Теперь узнаем, как найти площадь круга, зная длину его радиуса. Пусть радиус равняется 38 см. Используем известную нам формулу. Подставим сюда данное нам по условию значение. Получится следующее: s = 3,14*38^2 = 4534,16 кв. см.
  5. Последним заданием определим площадь круга по известной длине окружности. Пусть l = 47 метров. s = 47^2/(4П) = 2209/12,56 = 175,87 кв. м.

Это интересно! Что такое биссектриса треугольника: свойства, связанные с отношением сторон

Окружность, диаметр, хорда геометрия 7 класс

Заключение

Исходя из приведённых выше рассуждений, можно прийти к выводу, что никаких сложностей в задачах, связанных с нахождением всевозможных характеристик окружности, нет. Достаточно хорошо выучить понятия и формулы, а также уметь производить арифметические действия, причём все выражения выводятся друг из друга.

Это интересно! Чему равна и как найти площадь равностороннего треугольника

Как найти диаметр окружности?

Диаметром окружности называют отрезок прямой, которая соединяет две наиболее удаленные друг от друга точки окружности, проходя через центр окружности. Название диаметр, произошло с греческого языка и в дословном переводе обозначало – поперечный. Диаметр обозначают букой D латинского алфавита или значком O.

Диметр окружности

Для того, что бы знать, как найти диаметр окружности, нужно обратиться к формулам. Основных формул, по которым можно вычислить диаметр окружности две. Первая – D = 2R. Здесь диаметр равен удвоенному радиусу, где радиус – промежуток от центра до любой из точек окружности (R). Рассмотрим пример, если в задании известен радиус и он равен 10 см, то можно легко найти диаметр. Для этого значения радиуса подставим в формулу D = 2 * 10 = 20 см

Читайте также:  Как часто донор может сдавать кровь, плазму

Вторая формула дает возможность найти диаметр по длине окружности и выглядит она так D = L/П, где L- величина длины окружности, а П – это число Пи, которое примерно равно 3,14. Эту формулу очень удобно применять в практике. Если вам нужно знать диаметр люка, крышки на бак, какого-то котлована, стоит, лишь замерить их длину окружности и поделить ее на 3,14. Например, длина окружности равна 600 см, отсюда D = 600/3,14 = 191,08 см.

Диаметр описанной окружности

Диаметр описанной окружности также можно найти, если он описан или вписан в треугольник. Для этого сначала нужно найти радиус для вписанной окружности по формуле: R = S/p, где S обозначает площадь треугольника, а р – его полупериметр, p приравнивается к (a + b + c)/2. После того, как известен радиус, нужно воспользоваться первой формулой. Либо же сразу подставить все значения в формулу D = 2S/p.

Если вы не знаете, как найти диаметр описанной окружности, воспользуйтесь формулой, для нахождения радиуса окружности описанной около треугольника. R = (a * b * c)/4 * S, S в формуле обозначает величину площади треугольника. Потом, точно также подставьте значение радиуса в формулу D = 2R.

Внимание, только СЕГОДНЯ!

ДРУГОЕ

Как рассчитать трубу?

Иногда, проводя ремонтные или строительные работы необходимо точно знать объем и диаметр труб, их площадь и вес. Только…

Как найти площадь квадрата?

Кто-то из нас математику в школе просто прогуливал, кто-то проболел, а кто-то подзабыл за давностью школьных лет, но…

Что такое радиус?

Чаще всего термин «радиус» используется в геометрии. Впервые употреблен он был французским ученым П.…

Что такое диаметр?

Диаметр представляет собой отрезок, который соединяет две точки окружности и проходит через ее центр. Рассмотрим…

Как называется отрезок, соединяющий две точки окружности?

Вопрос о том, как называется отрезок, соединяющий две точки окружности, рассматривается в школьном курсе…

Как найти диаметр круга?

Чтобы написать, как найти диаметр круга, необходимо сначала определить, что это такое. Итак, диаметр круга – это…

Как найти образующую конуса?

Сегодня мы расскажем вам о том, как найти образующую конуса, что частенько требуется в школьных задачках по геометрии.…

Чему равен радиус описанной окружности?

Чему равен радиус описанной окружности?Описанной окружностью многоугольника называется такая окружность, которая…

Как найти длину окружности?

Окружностью называют кривую линию, которая ограничивает собой круг. В геометрии фигуры плоские, поэтому определение…

Как найти гипотенузу?

В самом начале напомним, что треугольник – это многогранник, у которого имеются 3 угла. Как найти гипотенузу…

Как найти дугу окружности?

Как найти дугу окружности?Дуга окружности – это одна из частей окружности, которые получаются после постановки на этой…

Как найти хорду?

Нахождение хорды в окружности, по своей сути – это математическая задача, а если уж говорить более конкретно, то задача…

Как найти периметр?

Наверняка каждый из нас учил в школе такую важную составляющую геометрии, как периметр. Нахождение периметра просто…

Как найти периметр и площадь?

Интересно, что много лет назад такой раздел математики, как «геометрия» называли «землемерием».…

Как найти площадь круга?

Как найти площадь круга(S)? Для начала необходимо усвоить, что такое число “пи”.Число “пи”( ) – это постоянная…

Как найти площадь окружности?

Окружностью называют геометрическую фигуру, состоящую из всех точек плоскости, находящихся на равном удалении от…

Как найти радиус описанной окружности?

Часто в геометрии приходится сталкиваться с описанными окружностями и их радиусами. Это ведет к простому вопросу: как…

Как найти радиус вписанной окружности?

Окружность считается вписанной в границы правильного многоугольника, в случае, если лежит внутри него, касаясь при этом…

Как найти площадь фигуры?

Как найти площадь фигуры?Знать и уметь рассчитывать площади различных фигур необходимо не только для решения простых…

Как вписать окружность в треугольник?

Для начала разберемся с том, какую окружность можно назвать вписанной в треугольник. Это вам не просто взять и…

Как разделить окружность на части?

Как разделить окружность на части?Для того чтобы разделить отрезок или угол на равные части, особых навыков не…

Вычисление радиуса: как найти длину окружности зная диаметр

Очень часто при решении школьных заданий по математике или физике возникает вопрос — как найти длину окружности, зная диаметр? На самом деле никаких сложностей в решении этой проблемы нет, нужно только чётко представлять себе, какие формулы, понятия и определения требуются для этого.

Читайте также:  Как узнать номер карты сбербанка, если ее нет под рукой

Основные понятия и определения

  1. Радиус — это линия, соединяющая центр окружности и её произвольную точку. Он обозначается латинской буквой r.
  2. Хордой называется линия, соединяющая две произвольные точки лежащие на окружности.
  3. Диаметр — это линия, соединяющая два пункта окружности и проходящая через её центр. Он обозначается латинской буквой d.
  4. Окружность — это линия, состоящая из всех точек, находящихся на равном расстоянии от одной избранной точки, именуемой её центром. Её длину будем обозначать латинской буквой l.

Площадь круга — это вся территория, заключённая внутри окружности. Она измеряется в квадратных единицах и обозначается латинской буквой s.

Пользуясь нашими определениями, приходим к выводу, что диаметр круга равен его самой большой хорде.

Нахождение длины окружности и её площади

Если нам дан радиус окружности, то диаметр окружности описывает формула d = 2*r. Таким образом, для ответа на вопрос, как найти диаметр круга, зная его радиус, достаточно последний умножить на два.

Формула длины окружности, выраженная через её радиус, имеет вид l = 2*П*r.

Теперь перепишем предыдущую формулу, чтобы найти длину окружности через её диаметр, помня, в чём состоит его разница по отношению к радиусу. Получится: l = 2*П*r = 2*r*П = П*d.

Из курса математики известно, что формула, описывающая площадь окружности, имеет вид: s = П*r^2.

Теперь перепишем предыдущую формулу, чтобы найти площадь окружности через её диаметр. Получим,

s = П*r^2 = П*d^2/4.

Одним из самых сложных заданий в данной теме является определение площади круга через длину окружности и наоборот. Воспользуемся тем, что s = П*r^2 и l = 2*П*r. Отсюда получим r = l/(2*П). Подставим полученное выражение для радиуса в формулу для площади, получится: s = l^2/(4П). Абсолютно аналогичным способом определяется и длина окружности через площадь круга.

Определение длины радиуса и диаметра

Ответим на вопрос, как узнать диаметр окружности, зная её длину. Для этого выразим его из формулы l = П*d. Получим d = l/П.

Мы уже знаем как из длины окружности можно найти её диаметр, точно также найдём и радиус.

l = 2*П*r, отсюда r = l/2*П. Вообще, чтобы узнать радиус, его нужно выражать через диаметр и наоборот.

Пусть теперь требуется определить диаметр, зная площадь окружности. Используем то, что s = П*d^2/4. Выразим отсюда d. Получится d^2 = 4*s/П. Для определения самого диаметра потребуется извлечь корень квадратный из правой части. Получится d = 2*sqrt(s/П).

Решение типовых заданий

  1. Узнаем, как найти диаметр, если дана длина окружности. Пусть она равняется 778,72 километра. Требуется найти d. d = 778,72/3,14 = 248 километров. Вспомним, что такое диаметр и сразу определим радиус, для этого определённое выше значение d разделим пополам. Получится r = 248/2 = 124 километра.
  2. Рассмотрим, как найти длину данной окружности, зная её радиус. Пусть r имеет значение 8 дм 7 см. Переведём это все в сантиметры, тогда r будет равняться 87 сантиметров. Воспользуемся формулой, как найти неизвестную длину круга . Тогда наше искомое будет равняться l = 2*3,14*87 = 546,36 см. Переведём наше полученное значение в целые числа метрических величин l = 546,36 см = 5 м 4 дм 6 см 3,6 мм.
  3. Пусть нам требуется определить площадь данной окружности по формуле через её известный диаметр. Пусть d = 815 метров. Вспомним формулу, как найти площадь окружности. Подставим сюда данные нам значения, получим s = 3,14*815^2/4 = 521416,625 кв. м.
  4. Теперь узнаем, как найти площадь круга, зная длину его радиуса. Пусть радиус равняется 38 см. Используем известную нам формулу. Подставим сюда данное нам по условию значение. Получится следующее: s = 3,14*38^2 = 4534,16 кв. см.
  5. Последним заданием определим площадь круга по известной длине окружности. Пусть l = 47 метров. s = 47^2/(4П) = 2209/12,56 = 175,87 кв. м.

Это интересно! Что такое биссектриса треугольника: свойства, связанные с отношением сторон

Окружность, диаметр, хорда геометрия 7 класс

Заключение

Исходя из приведённых выше рассуждений, можно прийти к выводу, что никаких сложностей в задачах, связанных с нахождением всевозможных характеристик окружности, нет. Достаточно хорошо выучить понятия и формулы, а также уметь производить арифметические действия, причём все выражения выводятся друг из друга.

Ссылка на основную публикацию
Adblock
detector