Как найти площадь, зная периметр - Flm-Krym.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Как найти площадь, зная периметр

Площадь прямоугольника

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru.

Сегодня мы расскажем, как вычислять площадь прямоугольника.

Различные формулы вычисления площади (а их действительно немало), изучают в 8 классе школы.

Что такое площадь прямоугольника

Но для начала давайте все-таки дадим основные определения:

Прямоугольник – это геометрическая фигура, относящаяся к категории четырехугольников. Ее отличительная особенность в том, что противоположные стороны лежат на параллельных прямых (то есть параллельны друг другу) и равны.

А частным случаем прямоугольника, если у него все стороны равны между собой, является квадрат.

Площадь любой геометрической фигуры, формально говоря, это ее размер. Другими словами, размер того пространства, которое находится внутри границ фигуры.

В отношении четырехугольников применимо еще понятие «квадратура». С его помощью показывали, сколько квадратов вместится внутрь фигуры.

Собственно, отсюда и пошло современное обозначение площадей, когда речь идет о габаритах помещения или какой-то территории. Мы часто слышим «столько-то квадратных метров (миллиметров, сантиметров, километров)» или просто «столько-то квадратов».

Для площади геометрических фигур действуют определенные правила:

  1. Она не может быть отрицательной.
  2. У равных фигур всегда равные площади.
  3. Если две фигуры не пересекаются друг с другом, то их общая площадь равна сумме площадей фигур по отдельности.
  4. Если одна фигура вписана в другую, то ее площадь всегда меньше, чем у второй.

Обычно фигуры, которые имеют равные площади, называют « равновеликими».

Как найти площадь прямоугольника

Площадь прямоугольника вычисляется по очень простой формуле – надо лишь перемножить его стороны.

Возьмем, к примеру, такой прямоугольник:

Площадь геометрической фигуры обычно обозначается латинской буквой «S». И тогда формула для конкретного примера будет:

Например, если мы имеем прямоугольник со сторонами 2 и 3 сантиметра, то его площадь составит 2 * 3 = 6 сантиметров.

Но бывают случаи, когда неизвестны размеры сторон прямоугольника, а площадь вычислить все равно надо. Для этого существуют более сложные формулы.

Формула площади прямоугольника через периметр

В этом случае есть два варианта.

    Первый — вычислить длину второй стороны. Для этого надо вспомнить, что периметр (обозначается буквой «Р») считается по формуле:

И тогда обратные расчеты выглядят вот так:

Площадь прямоугольника через диагональ

Известна одна сторона и длина диагонали.

Тут опять же есть два варианта. В первом случае вычисляем длину второй стороны, используя теорему Пифагора.

Второй вариант – опять же сразу прибегнуть к готовой формуле:

Если известны длина диагоналей и угол между ними.

В этом случае стоит воспользоваться вот такой формулой:

Вот и все, что нужно знать о вычислении площади прямоугольников.

Калькулятор вычисления периметра и площади геометрических фигур

Определение периметра и площади геометрических фигур — важная задача, которая возникает при решении многих практических или бытовых задач. Если вам требуется поклеить обои, установить забор, рассчитать расход краски или кафеля, то вам обязательно придется иметь дело с геометрическими расчетами.

Для решения перечисленных бытовых вопросов вам потребуется работать с самыми разными геометрическими фигурами. Мы представляем вам каталог онлайн-калькуляторов, которые позволяют вычислить параметры наиболее популярных плоских фигур. Рассмотрим их.

Окружность — это множество точек на плоскости, которые равноудалены от центра на некоторое расстояние, называемое радиусом. Многие считают круг и окружность синонимами, однако это не так. Круг — это часть плоскости, ограниченная окружностью. Вы можете отыскать периметр и площадь круга, но у окружности найти можно только длину, так как она представляет собой кривую, не имеющую площади. Длина окружности или периметр круга находятся по простой формуле:

где R – радиус фигуры.

Площадь круга рассчитывается согласно следующему выражению:

Круги часто встречаются в реальной жизни. В основном это основания цилиндрических и конических деталей, а также просто круглые поверхности, например, круглые столики, диски, грампластинки или катушки. Вид окружности имеют колеса, обручи или кольца. В трехмерной реальности окружность превращается в сферу, а круг — в шар. Форму этих геометрических тел имеют многие реальные и природные объекты. Благодаря своей эффективности круг охватывает максимальную площадь при минимальном периметре. Именно поэтому форму шара имеют капли, снежные комья, метеориты или планеты.

Треугольник

Треугольник — первая гармоничная фигура на плоскости, ограниченная тремя отрезками. Свойства треугольника известны людям с античных времен: изучение фигуры стартовало в Древнем Египте и не завершено до сих пор. Огромный вклад в изучение свойств фигуры внесли Евклид, Эйлер и Лобачевский, но даже сегодня продолжается работа над поиском замечательных точек треугольника, которых на данный момент найдено более 6 тысяч. Для определения периметра фигуры достаточно сложить длины всех сторон треугольника по формуле:

где a, b, c – стороны.

Для вычисления площади треугольника используется 5 различных формул плюс нахождение площади через определенный интеграл. Самое простое выражение для вычисления площади:

где a — сторона треугольника, h — его высота.

Наш калькулятор позволяет отыскать площадь или периметр треугольника, зная разные комбинации нескольких параметров, таких как углы, стороны или радиусы связанных окружностей.

Треугольники не слишком распространены в реальной повседневности. В природе они практически не встречаются, за исключением кристаллических решеток некоторых молекул или формы ушей у рыси. А вот в технике, геометрии и прикладных науках треугольник — царь и бог. Наибольшее применение находит следующий тип фигуры.

Прямоугольный треугольник

Прямоугольный треугольник — особая вариация фигуры, у которой две стороны обязательно образуют прямой угол. Эти стороны называются катетами, а противолежащая им сторона — гипотенузой. Соотношение катетов и гипотенузы лежит в основе евклидовой геометрии — эти соотношения определяются теоремой Пифагора. Изучение свойств прямоугольного треугольника положило начало одному из важных разделов математики — тригонометрии, которая используется в самых разных прикладных сферах от компьютерных игр до океанографии.

Формулы для вычисления периметра и площади прямоугольного треугольника ничем не отличаются от формул для обычных вариаций данной фигуры или вытекают из них.

Трапеция

Трапеция, как и слово трапеза, по-гречески означают «стол». Это плоская фигура, ограниченная четырьмя прямыми, две из которых параллельны, а две — нет. По сути, это выпуклый четырехугольник, поэтому параллелограмм и прямоугольник считаются частными случаями трапеции. В общем случае все стороны трапеции имеют разную длину, и для вычисления периметра используется формула:

a, b, c и d – стороны четырехугольника.

Площадь фигуры определяется как:

где a и b – параллельные стороны трапеции, h – высота.

Трапеция очень часто встречается в рукотворном мире. Грани многих предметов имеют вид этого четырехугольника, а буквально трапецеидальную форму имеют такие объекты как автомобильные окна, паруса, скаты крыш или юбки.

Параллелограмм

Параллелограмм — это элегантный четырехугольник, пары сторон которого параллельны друг другу. Любой четырехугольник становится параллелограммом, если его противолежащие стороны параллельны, диагонали в точке пересечения разделяются пополам, а противоположные углы равны. Для вычисления периметра параллелограмма используется простая формула, которая иллюстрирует сумму попарно равных сторон:

Площадь параллелограмма не зависит от величины его углов, и находится по следующей формуле:

Параллелограммы часто встречаются в реальной жизни: это грани многих призматических объектов, очертания полей, спортивных площадок или клумб. Форму параллелограммов имеют практически все отделочные материалы: плитка, кафель, гипсокартон, паркет. Такое разнообразие обусловлено тем, что частными случаями параллелограмма являются прямоугольник, ромб и квадрат, формулы для определения периметров и площадей которых аналогичны или выводятся из теоремы Пифагора.

Частные случаи

Ромб — четырехугольник с одинаковыми сторонами. Параллелограмм становится ромбом в случаях, если его диагонали пересекаются под углом 90 градусов и являются биссектрисами своих углов.

Прямоугольник — это параллелограмм с прямыми углами. Кроме того, параллелограмм считается прямоугольником, если его стороны и диагонали отвечают условиям теоремы Пифагора.

Квадрат — это параллелограмм, у которого все стороны равны и все углы равны. Диагонали квадрата полностью повторяют свойства диагоналей прямоугольника и ромба, что делает квадрат уникальной фигурой, которая характеризуется максимальной симметрией.

Многоугольник

Правильный полигон — это выпуклая фигура на плоскости, которая имеет равные стороны и равные углы. В зависимости от количества сторон многоугольники имеют собственные названия:

Читайте также:  Как назвать быка

И так далее. Геометры шутят, что круг — это многоугольник с бесконечным количеством углов. Наш калькулятор запрограммирован на определение периметров и площадей только правильных многоугольников. Он использует общие формулы для всех правильных полигонов. Для вычисления периметра используется формула:

где n – количество сторон многоугольника, a – длина стороны.

Для определения площади используется выражение:

S = n/4 × a 2 × ctg(pi/n).

Подставляя соответствующее n, мы можем подобрать формулу для любого правильного многоугольника, к которым также относятся равносторонний треугольник и квадрат.

Многоугольники имеют большое распространение в реальной жизни. Так форму пятиугольника имеет здание министерства обороны США — Пентагон, гексагона — пчелиные соты или кристаллы снежинки, октагона — дорожные знаки. Кроме того, многие простейшие, например радиолярии, имеют форму правильных полигонов.

Примеры из реальной жизни

Давайте рассмотрим пару примеров использования нашего калькулятора в реальных расчетах.

Покраска забора

Покраска поверхностей и расчет краски — это одни из самых очевидных бытовых задач, в которых требуются минимальные математические расчеты. Если нам нужно покрасить забор, высота которого составляет 1,5 метра, а длина 20 метров, то сколько потребуется банок краски? Для этого нужно узнать суммарную площадь забора и расход лакокрасочных материалов на 1 квадратный метр. Мы знаем, что расход эмали составляет 130 грамм на метр. Теперь определим площадь забора, используя калькулятор для вычисления площади прямоугольника. Она составит S = 30 квадратных метров. Естественно, что забор мы будем красить с обеих сторон, поэтому площадь для покраски увеличится до 60 квадратов. Тогда нам понадобится 60 × 0,13 = 7,8 килограмм краски или три стандартных банки по 2,8 килограмма.

Отделка бахромой

Пошив одежды — еще одна отрасль, в которой необходимы обширные геометрические познания. Пусть нам надо отделать бахромой платок, который представляет собой равнобедренную трапецию со сторонами 150, 100, 75 и 75 см. Для вычисления расхода бахромы нам потребуется узнать периметр трапеции. В этом нам и пригодится онлайн-калькулятор. Введем эти данные ячейки и получим ответ:

Таким образом, нам понадобится 4 м бахромы для отделки платка.

Заключение

Плоские фигуры составляют реальный мир вокруг. Мы часто задавались в школе вопросом, пригодится ли нам геометрия в будущем? Выше приведенные примеры показывают, что математика постоянно используется в повседневной жизни. И если площадь прямоугольника для нас привычна, то вычислить площадь додекагона может оказаться трудной задачей. Используйте наш каталог калькуляторов для решения школьных заданий или бытовых вопросов.

Как найти периметр зная площадь

Затеяв ремонт, необходимо в первую очередь иметь план действий и рассчитать свой бюджет. Только при грамотной планировке можно добиться качественной работы в короткие сроки. Если вы собираетесь сделать ремонт своего потолка, то необходимо сделать необходимые замеры. Зная площадь потолка можно примерно рассчитать, сколько материалов нужно будет купить и сколько будет стоимость услуги мастеров, если собираетесь обратиться к ним. Но площадь прямоугольника – это еще не все. Иногда бывает так, что нужно знать периметр прямоугольника . встает вопрос можно ли узнать периметр, зная при этом площадь? Рассмотрим этот вопрос повнимательнее, и постараемся найти периметр прямоугольника.

Данные необходимые для того чтобы найти периметр

Сумма всех сторон прямоугольника называется периметром – это еще мы уяснили из курса арифметики начальных классов. Как видно из условия необходимо знать длину сторон. Площадь же – результат умножения двух сторон, в этом случае так же необходимо знать длину сторон. И в первом и во втором случае обязательным условием является знание длин сторон А и В.

Как же через показатель площади найти у прямоугольника периметр? Тут может быть два варианта: первый, если наш прямоугольник с равными сторонами, то есть квадрат, а второй, если длина сторон разная.

При условии, что потолок квадратный то найти периметр очень просто. Зная формулу нахождения площади квадрата, можно выяснить найти длину всех сторон, ведь они у квадрата одинаковые.

  1. Площадь = длина стороны во второй степени. Чтобы найти длину стороны нам нужно переделать данную формулу следующим образом:
  2. Длина стороны = корень квадратный от площади
  3. Так длина стороны при площади 4 квадратных метров, будет 2 метра, а при 16 квадратных метров 4 метра.
  4. Периметр = длина квадрата умноженная на 4. При длине стороны 2 метра, то периметр будет 8 метров. Тут все просто.

Довольно простой способ, который позволит посчитать периметр квадратного потолка. Квадратный потолок будет отличаться тем что, при большом показателе периметра будет относительно не большие площади. Однако квадратные потолки – это довольно редкий случай. Как правило, такие помещения не очень смотрятся, поэтому наиболее распространенные являются прямоугольные потолки.

Можно ли также найти периметр не квадратного прямоугольника?

Данный способ для прямоугольника с разными сторонами не подходит. Ведь вариантов разности сторон может быть до бесконечности много. И тут для определения периметра обязательным условием является знание хотя бы одной из сторон и площади.

Площадь = длина первой стороны умножается на длину второй стороны

Исходя из этой формулы, зная площадь найти две неизвестные стороны прямоугольника невозможно, но возможно выяснить длину одной стороны, если есть длина первой. Так если площадь прямоугольника 10 квадратных метров, а длина одной из сторон 2 метра, то можно посчитать

10 = 2 умножить на длину неизвестной стороны, следовательно, неизвестная сторона = 10 разделить на 2. Получаем ответ 5 метров.

Периметр = ( 5 + 2 ) * 2. Периметр такого прямоугольника будет 14 метров.

Таким образом, с подсчетом не возникнет проблем, если вы хорошо учили арифметику. Однако для того чтобы упростить себе жизнь, можно обратиться в фирмы по ремонту квартир. Мастера подобных организаций берут на себя весь процесс расчетов и монтажных работ, вам только необходимо будет подписать с ними соответствующие документы и все. Использование подобных услуг – это очень простой способ решения нудной проблемы ремонта потолков. Вы получаете компетентную помощь от высококвалифицированной бригады мастеров, которые имеют большой опыт работы. А подписывая с ними контракт, вы страхуете себя от ненужных проблем, которые порою бывают из-за недопонимания. Договоры о сотрудничестве содержат все нюансы работы, и выполняются в соответствии с законом.

При планировании бюджета на ремонт потолка, после проведенных расчетов необходимо закупить расходные материалы. Рекомендуется покупать немного больше требуемого объема материалов, так как бывают случаи с неожиданным результатом. Так хорошо будет брать запас в 15 процентов – это оптимальный объем. Но еще более приемлемым будет заказать ремонт потолков под ключ, ведь в этом случае нет надобности беспокоиться о закупках. Мастера сами предложат выбрать материалы для ремонта, после того как выбор был сделан они привезут и сделают ремонт. Как правило, у них налажена система логистики, поэтому с доставкой не возникает проблем. Если вы цените свое время и нервы, рекомендуется обратиться к подобным компаниям по ремонту потолков под ключ. Вы получите качественный сервис в короткие сроки, и ваш потолок будет радовать вас как никогда прежде. В любом случае решение остается за вами!

Как найти площадь если известна длина и периметр

Пользователь BekaBrat #1 задал вопрос в категории Домашние задания и получил на него 2 ответа.

Если известна длина и площадь как найти ширину и периметр?

Ответы и объяснения

Площадь делишь на длину-находишь ширину

Теперь длина и ширина известны, значит складываешь ширину и длину и умножаешь сумму на 2-это будет периметр

    Комментарии Отметить нарушение

Зная длину и площадь, можно найти ширину, разделив площадь на длину:

А чтобы найти периметр, нужно сначала также найти ширину, разделив площадь на длину, затем сложить длину и ширину, а потом умножить эту сумму на 2:

Как найти площадь если известна длина и периметр

Если известна длина и площадь как найти ширину и периметр?

Ответы и объяснения

Площадь делишь на длину-находишь ширину

Читайте также:  Как пересказать текст

Теперь длина и ширина известны, значит складываешь ширину и длину и умножаешь сумму на 2-это будет периметр

    Комментарии Отметить нарушение

Зная длину и площадь, можно найти ширину, разделив площадь на длину:

А чтобы найти периметр, нужно сначала также найти ширину, разделив площадь на длину, затем сложить длину и ширину, а потом умножить эту сумму на 2:

Как найти площадь если известна длина и периметр

Как найти стороны прямоугольника, если известна площадь и периметр?

Как найти стороны прямоугольника, если известна площадь и периметр?

Итак, для начала рассмотрим формулы для нахождения площади и периметра:

1) S = a * b = 56 см2;

2) Р = 2а + 2b = 30 см.

Ведь мы знаем, что прямоугольник имеет по две одинаковых стороны.

Таким образом нам требуется решить систему из двух уравнений:

Отсюда получаем, что одна сторона равна 7, а другая 8.

Зная формулы периметра прямоугольника и его площади, стороны ищутся в виде решения системы двух уравнений. Для начала выражаем значение одной стороны через другую и например площадь. Это выглядит так А=S/В=56/В

Затем подставляем это выражение вместо буквы А в уравнении для периметра:

Получаем что 56/В+В=15

В этом уравнении даже решать его не надо — любому человеку знакомому с таблицей умножения сразу видно, что 56 это произведение 7 и 8, а поскольку и сумма этих цифр как раз 15, то они и есть нужные нам значения сторон прямоугольника.

Можно попробовать решить данную задачу, составив систему уравнений.

Периметр прямоугольника равен: p=2a+2b;

Площадь прямоугольника равна: s=a*b;

Так как мы знаем периметр и площадь, то сразу подставляем числа:

Выражаем b через a во втором уравнении:

И подставляем 56/a вместо b в первое уравнение:

Домножаем обе части на a:

Получаем квадратное уравнение:

Находим корни этого квадратного уравнения:

(15(15-4*1*56))/2*1 = (15(225-224))/2 = (151)/2 = (151)/2

Получилось, что корни этого уравнения:

Получается, что у нас 2 возможных варианта прямоугольников.

Вспомним, что мы выразили: b=56/a;

Отсюда находим возможные b:

Как оказалось эти два разных прямоугольника — это один и тот же, просто достигнуть периметра в 30 при площади в 56 можно:

Либо наоборот: a=8 и b=7.

То есть в сущности у нас один и тот же прямоугольник, просто в одном варианте вертикальная сторона больше горизонтальной, а в другом наоборот — горизонтальная больше вертикальной.

Ответ: одна сторона 7 сантиметров, а вторая 8 сантиметров.

Вспоминаем школьную геометрию:

Периметр прямоугольника — это будет сумма длин всех сторон, а площадь прямоугольника — это уже произведение двух смежных его сторон (длину на ширину).

В данном случае нам известны и Площадь и Периметр прямоугольника. Они равны 56 см^2 и 30 см соответственно.

S — площадь = а x b;

Р — периметр = а + b + a + b = 2a + 2b;

Получили квадратное уравнение, решая которое получаем: b1 = 8, b2 = 7.

Находим и другую сторону прямоугольника:

Ответ: стороны прямоугольника равны 8 и 7 см или же 7 и 8 см.

Если периметр прямоугольника Р = 30 см, а его площадь S = 56 см, то его стороны будут равны :

А — одна сторона, в — другая сторона прямоугольника.

Решив эту систему, приходим к тому, что сторона а будет равна 7 см, а сторона в будет равна 8 см.

А = 7 см в = 8 см.

Дано: S = 56 см

Стороны=?

Пусть стороны прямоугольника a и b.

Тогда: площадь S = a * b, периметр Р=2*(a + b),

Получим систему уравнений:

B=15-a, a^2 -15a +56 =0 ,решая которое, получим :

B1=8, b2=7. То есть стороны прямоугольника: a=7,b=8 ,или наоборот:a=8,b=7.

Чтобы решить поставленную задачу, нужно составить систему уравнений и решить ее

Получим квадратное уравнение, которое легко решается, если подставить в него значения периметра и площади

Дискриминант равен 1 и уравнение имеет два корня 7 и 8, следовательно одна из сторон Равна 7 см, другая 8 см или наоборот.

Я специально выписал здесь дискриминант, так как по нему очень хорошо ориентироваться

Если в условии задачи на нахождение сторон прямоугольника значение периметра и площади заданы так, что этот дискриминант Больше ноля, тогда мы имеем Прямоугольник;

Если дискриминант Равен нолю — тогда имеем Квадрат (P=30, S=56,25, квадрат со стороной 7,5);

Если дискриминант Меньше ноля, то тогда такой Прямоугольник не существует (P=20, S=56 — решения нет)

Периметр 30, площадь 56. Назовем стороны прямоугольника а и с. Тогда можем составить такие уравнения:

Далее решаем систему уравнений и находим, что стороны прямоугольника составляют 7 и 8 см.

Обозначим одну сторону буквой Х, другую — буквой Y.

Площадь прямоугольника вычисляется умножением длин сторон, следовательно, мы можем составить первое уравнение:

Периметр — это сумма длин сторон, следовательно, второе уравнение такое:

Получаем систему двух уравнений.

По первому уравнению выделяем Х: Х=56:Y, подставляем это во второе уравнение:

2*56:Y+2Y=30 Отсюда уже легко найти значение Y: Y=7, тогда Х=8.

Нашла еще такое решение,

Известно, что периметр прямоугольника 30 а площадь 56, далее:

Периметр = 2*(длина + ширина) или 2L + 2W

Площадь= длина * ширина или L * W

2L + 2W = 30 (делим обе части на 2)

Честно говоря, не совсем поняла решение, но думаю, тот, кто не совсем подзабыл математику, разберется.

Образовательный журнал для школьников, воспитателей и учителей

Как найти площадь зная периметр и сторону. Как найти площадь и периметр прямоугольника? Задачи на нахождение периметра прямоугольника

Прямоугольник – это частный случай четырехугольника. Это значит, что у прямоугольника четыре стороны. Его противоположные стороны равны: так например, если одна из его сторон равна 10 см, то противоположная ей будет так же равны 10 см. Частным случаем прямоугольника является квадрат. Квадрат – это прямоугольник, у которого все стороны равны. Для вычисления площади квадрата можно пользоваться тем же алгоритмом, что и для вычисления площади прямоугольника.

Как узнать площадь прямоугольника по двум сторонам

Для того чтобы найти площадь прямоугольника, надо умножить его длину на ширину: Площадь = Длина × Ширина. В случае, указанном ниже: Площадь = AB × BC.

Как узнать площадь прямоугольника по стороне и длине диагонали

В некоторых задачах необходимо найти площадь прямоугольника, используя длину диагонали и одну из сторон. Диагональ прямоугольника делит его на два равных прямоугольных треугольника. Следовательно, можно определить вторую сторону прямоугольника, воспользовавшись теоремой Пифагора. После этого задача сводится к предыдущему пункту.


Как узнать площадь прямоугольника по периметру и стороне

Периметр прямоугольника – это сумма всех его сторон. Если известен периметр прямоугольника и одна сторона (например ширина), можно вычислить площадь прямоугольника, воспользовавшись следующей формулой:
Площадь = (Периметр×ширина – ширина^2)/2.


Площадь прямоугольника через синус острого угла между диагоналями и длину диагонали

Диагонали в прямоугольнике равны, поэтому, чтобы вычислить площадь на основании длины диагонали и синуса острого угла между ними, следует воспользоваться следующей формулой: Площадь = Диагональ^2 × sin(острого угла между диагоналями)/2.


Интересно, что много лет назад такой раздел математики, как «геометрия» называли «землемерием». И о том, как найти периметр и площадь, известно уже давно. К примеру, говорят, что самыми первыми вычислителями этих двух величин являются жители Египта. Благодаря таким знаниям они могли строить известные сегодня сооружения.

Умение находить площадь и периметр может пригодиться в повседневной жизни. В быту данные величины используются, когда необходимо что-либо покрасить, засадить или обработать сад, поклеить в комнате обои и т. п.

Периметр

Чаще всего необходимо узнать периметр многоугольников или треугольников. Чтобы определить эту величину, достаточно лишь знать длины всех сторон, а периметр составляет их сумму. Найти периметр, если известна площадь, также возможно.

Треугольник

Если необходимо знать периметр треугольника, для его вычисления стоит применить такую формулу P = а + b + с, где а, b, с – стороны треугольника. В этом случае все стороны обычного треугольника на плоскости суммируются.

Читайте также:  Как сделать простой бумажный кораблик

Периметр круга обычно принято называть длиной окружности. Чтобы узнать данную величину, необходимо использовать формулу: L = π*D = 2*π*r, где L- длина окружности, r – радиус, D – диаметр, а число π, как известно, примерно равно 3,14.

Квадрат, ромб

Формулы для периметров квадрата и ромба одинаковы, потому что и у одной фигуры, и у другой все стороны равны. Поскольку квадрат и ромб имеют равные стороны, то их (стороны) можно обозначить одной буквой «а». Получается, периметр квадрата и ромба равен:

  • Р = а + а + а + а или Р = 4а

Прямоугольник, параллелограмм

У прямоугольника и параллелограмма противолежащие стороны одинаковы, поэтому их можно обозначить двумя разными буквами «а» и «b». Формула выглядит так:

  • Р = а + b + а + b = 2а + 2b. Двойку можно вывести за скобки, и получится такая формула: Р = 2 (а+b)

Трапеция

У трапеции все стороны разные, поэтому их обозначают разными буквами латинского алфавита. В связи с этим формула для периметра трапеции выглядит так:

  • Р = а + b + с + d Здесь все стороны суммируются вместе.

Площадь

Площадь – та часть фигуры, которая заключена внутри ее контура.

Прямоугольник

Чтобы вычислить площадь прямоугольника, необходимо умножить значение одной стороны (длины) на значение другой (ширины). Если значения длины и ширины обозначаются буквами «а» и «b», то площадь вычисляется по формуле:

Квадрат

Как уже известно, стороны квадрата равны, поэтому для вычисления площади можно просто взять одну сторону в квадрат:

Формула нахождения площади ромба имеет немного другой вид: S = a*h a , где h a – это длина высоты ромба, которая проведена к стороне.

Кроме того, площадь ромба можно узнать по формулам:

  • S = a 2 *sin α, при этом а является стороной фигуры, а угол α – угол между сторонами;
  • S = 4r 2 /sin α, где r – радиус вписанной в ромб окружности, а угол α – угол между сторонами.

Площадь круга также узнается легко. Для этого можно использовать формулу:

  • S = πR 2 , где R – радиус.

Трапеция

Чтобы вычислить площадь трапеции, можно воспользоваться данной формулой:

  • S = 1/2*a*b*h, где a, b – основания трапеции, h – высота.

Треугольник

Для нахождения площади треугольника воспользуйтесь одной из нескольких формул:

  • S = 1/2*a*b sin α (где а, b – стороны треугольника, а α – угол между ними);
  • S = 1/2 a*h (где а – основание треугольника, h – опущенная к нему высота);
  • S = abc/4R (где a, b, c – стороны треугольника, а R – радиус описанной окружности);
  • S = p*r (где p – полупериметр, r – радиус вписанной окружности);
  • S= √ (p*(p-a)*(p-b)*(p-c)) (где p – полупериметр, a, b, c – стороны треугольника).

Параллелограмм

Для вычисления площади данной фигуры необходимо подставить значения в одну из формул:

  • S = a*b*sin α (где а, b – основания параллелограмма, α – угол между сторонами);
  • S = a*h a (где a – сторона параллелограмма, h a – это высота параллелограмма, которая опущена к стороне а);
  • S = 1/2 *d*D* sin α (где d и D – диагонали параллелограмма, α – угол между ними).

Прямоугольник – это четырехугольник у которого две противоположные стороны равны и все четыре угла одинаковы.

Прямоугольники отличаются между собой только отношением длинной стороны к короткой, но все четыре угла у них прямые, то есть по 90 градусов.

Длинную сторону прямоугольника называют длиной прямоугольника , а короткую – шириной прямоугольника .

Стороны прямоугольника одновременно является его высотами.

Основные свойства прямоугольника

Прямоугольником могут быть параллелограмм, квадрат или ромб.

1. Противоположные стороны прямоугольника имеют одинаковую длину, то есть они равны:

2. Противоположные стороны прямоугольника параллельны:

3. Прилегающие стороны прямоугольника всегда перпендикулярны:

AB ┴ BC, BC ┴ CD, CD ┴ AD, AD ┴ AB

4. Все четыре угла прямоугольника прямые:

∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°

5. Сумма углов прямоугольника равна 360 градусов:

∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°

6. Диагонали прямоугольника имеют одинаковой длины:

7. Сумма квадратов диагонали прямоугольника равны сумме квадратов сторон:

2d 2 = 2a 2 + 2b 2

8. Каждая диагональ прямоугольника делит прямоугольник на две одинаковые фигуры, а именно на прямоугольные треугольники.

9. Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам:

AO = BO = CO = DO =d
2

10. Точка пересечения диагоналей называется центром прямоугольника и также является центром описанной окружности

11. Диагональ прямоугольника является диаметром описанной окружности

12. Вокруг прямоугольника всегда можно описать окружность, так как сумма противоположных углов равна 180 градусов:

∠ABC = ∠CDA = 180° ∠BCD = ∠DAB = 180°

13. В прямоугольник, у которого длина не равна ширине, нельзя вписать окружность, так как суммы противоположных сторон не равны между собой (вписать окружность можно только в частный случай прямоугольника – квадрат).

Стороны прямоугольника

Длиной прямоугольника называют длину более длинной пары его сторон. Шириной прямоугольника называют длину более короткой пары его сторон.

Формулы определения длин сторон прямоугольника

1. Формула стороны прямоугольника (длины и ширины прямоугольника) через диагональ и другую сторону:

2. Формула стороны прямоугольника (длины и ширины прямоугольника) через площадь и другую сторону:

b = d cosβ
2

Диагональ прямоугольника

Диагональю прямоугольника называется любой отрезок соединяющий две вершины противоположных углов прямоугольника.

Формулы определения длины диагонали прямоугольника

1. Формула диагонали прямоугольника через две стороны прямоугольника (через теорему Пифагора):

2. Формула диагонали прямоугольника через площадь и любую сторону:

4. Формула диагонали прямоугольника через радиус описанной окружности:

5. Формула диагонали прямоугольника через диаметр описанной окружности:

6. Формула диагонали прямоугольника через синус угла, прилегающего к диагонали, и длину стороны противоположной этому углу:

8. Формула диагонали прямоугольника через синус острого угла между диагоналями и площадью прямоугольника

Периметр прямоугольника

Периметром прямоугольника называется сумма длин всех сторон прямоугольника.

Формулы определения длины периметру прямоугольника

1. Формула периметру прямоугольника через две стороны прямоугольника:

2. Формула периметру прямоугольника через площадь и любую сторону:

P =2S + 2a 2=2S + 2b 2
ab

3. Формула периметру прямоугольника через диагональ и любую сторону:

P = 2(a + √ d 2 – a 2 ) = 2(b + √ d 2 – b 2 )

4. Формула периметру прямоугольника через радиус описанной окружности и любую сторону:

P = 2(a + √4R 2 – a 2 ) = 2(b + √4R 2 – b 2 )

5. Формула периметру прямоугольника через диаметр описанной окружности и любую сторону:

P = 2(a + √D o 2 – a 2 ) = 2(b + √D o 2 – b 2 )

Площадь прямоугольника

Площадью прямоугольника называется пространство ограниченный сторонами прямоугольника, то есть в пределах периметра прямоугольника.

Формулы определения площади прямоугольника

1. Формула площади прямоугольника через две стороны:

2. Формула площади прямоугольника через периметр и любую сторону:

5. Формула площади прямоугольника через радиус описанной окружности и любую сторону:

S = a √4R 2 – a 2 = b √4R 2 – b 2

6. Формула площади прямоугольника через диаметр описанной окружности и любую сторону:

S = a √D o 2 – a 2 = b √D o 2 – b 2

Окружность описанная вокруг прямоугольника

Окружностью описанной вокруг прямоугольника называется круг проходящий через четыре вершины прямоугольника, центр которого лежит на пересечении диагоналей прямоугольника.

Формулы определения радиуса окружности описанной вокруг прямоугольника

1. Формула радиуса окружности описанной вокруг прямоугольника через две стороны:

4. Формула радиуса окружности, которая описана около прямоугольника через диагональ квадрата :

5. Формула радиуса окружности, которая описана около прямоугольника через диаметр окружности (описанной):

6. Формула радиуса окружности, которая описана около прямоугольника через синус угла, который прилегает к диагонали, и длину стороны противолежащей этому углу:

7. Формула радиуса окружности, которая описана около прямоугольника через косинус угла, который прилегает к диагонали, и длину стороны у этого угла:

8. Формула радиуса окружности, которая описана около прямоугольника через синус острого угла между диагоналями и площадью прямоугольника:

Угол между стороной и диагональю прямоугольника.

Формулы для определения угла между стороной и диагональю прямоугольника:

1. Формула определения угла между стороной и диагональю прямоугольника через диагональ и сторону:

2. Формула определения угла между стороной и диагональю прямоугольника через угол между диагоналями:

Угол между диагоналями прямоугольника.

Формулы для определения угла меж диагоналей прямоугольника:

1. Формула определения угла меж диагоналей прямоугольника через угол между стороной и диагональю:

2. Формула определения угла между диагоналями прямоугольника через площадь и диагональ.

Ссылка на основную публикацию
Adblock
detector